L

s

AD=-AD97 273 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 972
THE OPERATIONAL APPROACH TO REQUIREMENTS SPECIFICATION FOR EMBE~=ETC(U)
DEC 80 P ZAVE AFOSR-77=3181
UNCLASSIFIED TR=976 AFOSR~TR=-81-0322

| ue

|"“|=—9 SR e
= [z

o =

e

22 i nie

.

UNCLASSLFIED :
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) m LEVEL #

LA t
: REPOI;IPBQCUMENTATlON PAGE N\ ertin et g g .
- Y. REPORT NUMBER 2. GOVT ACCESSION NO[3 RECIPIENT'S CATALOG NUMBER
| § ; AFOSR4TR- 31 - dsaz D-A091.543
' T4 e ErarE Subrie) »_\..___..M- ¥ 5. TYPE OF REPORT & PERIOD COVERED
2! IONAL ROACH TO_REQUIREMENTS — '
@ 'S?EC% CATION EMBEDDED STEMS o LA o
15 5’/ - - 6 PERFORMING ORG. REPORT NUMBER -

AUTHOR(s) 8. CONTRACT OR GRANT NUMBER s
@Pamela . O b @ b1 AFOSR-77-3181
z :

1P
! - -
..- 9. PERFORMING ORGAN{ZATION NAME - AND ADBRESS 10. PROGRAM ELEMENT PAOJECT TASK
AREA & WORK UNIT NUMBERS
Department of Computer Sciences.-- I \[_7)
University of Maryland |, - o
@) | College Park p 20742 l‘}’g] g ?ﬂp w 23(}4/A2 G //a2s B
1. CONTROLLING OFFICE NAME AND e - _ri ~88‘POR‘F DATE A
Do Air Force Office of Scientific Research/NM DEC EEXLBER /580 -
Bolling AFB DC 20332 13. NUMBER OF PAGES
o 72 /2) 75 /
1 MONITORING AGENCY NAME & ADDRESSrif dffferent from Contralling Office) 15. SECURITY CL ASS ’o'
5 q TrTeri'm technical e
Pepth, |7 RsSTeTE e
o 16. DI;TARIBUTION STATEMENT (of this Report) . ’ 4 -
3 i ——
; ¢ Approved for public release; distribution unlimited. D I '< :
[
<

ELECTE
A APR2 1981 &
: ; L&
17. bISTRIBUTION STATEMENT (of the abstract entered in Biock 20, if different from Renorf)ﬁ
B o

18. SUPPLEMENTARY NOTES

19. KEY WCRDS fContinue on reverse side if necescary and identify by block number)

Requirements analysis and specification, embedded (real-time) systems, system
design and specification, simulation models, distributed processing,
applicative programming. ‘

*~

£ -
() 29 ABSTRACT (Continus on reverse side {f necessary and identify by block number® . :
< “This paper is a self-contained and comprehensive presentation of the "opera- y
tional'' approach to requirements specification for embedded systems, which is -
L based on the concept of specifying requirements as an executable model of the ?
— proposed system interacting with its enviromment. It is argued that urgent
i performance requirements characterize embedded systems, and a formal treatment e Coatl
' of performance is given. The language is process-oriented so that the
E l&.’;\rallehsm inherent in embedded system requirements can be expressed directly. ,
tivation and examples gre emphasized throughout. s »

\' oo ,52™, 1473 UNCLASSIFIED 6&0 fd 44 /

SECURITY CLASSIFICATION OF YHIS P AGT Whan Dara Fatered:

""’wu . o- - su L e, . . . -~
¥y v :s-' -.-:;~ S, R A LA N St i
e &

"‘\--" ‘}' /..v(w""\". \‘h"“"m“ %g‘m ﬂd‘. _,...' X N . R e, . JRROIEY B A

e m o mm e e e) . e ’ i ~ ——

AFOSR-TR- 81 -0322

TR-976 Decenber 1980

THE OPERATIONAL APPROACH
TO REQUIREMENTS SPECIFICATION
FOR EMBEDDED SYSTEMS*

Pamela Zave

Abstract This paper is a self-contained and comprehensive presentation of
the “operational” approach to requirements specification for embedded systens,

which 1s based on the concept of specifying requirements as an
model of the proposed system interacting with {ts environment.

executable

It is argued

that urgent performance requirements characterize enbedded systems, and a
formal treatment of performance is given. The language i{s process-orieated so

that the parallelism inherent in embedded system requirements can
directly. Motivation and examples are emphasized throughout.

Keywords requirements analysis and specification embedded
syscem§¥z'§7§tem design and specification, simulation models,
processing, applicative programming

*This research was ongsored in part bv the Air Force

be expressed

real-time)
istributed

Office of

s
Scientific Research (AFOSR-77-31816). Computer time was provided by the

Computer Science Center, University of Maryland.

App
distridution

2 037

roved for public release;

unlimiteds

g e = -

B AR S

0. INTRODUCTION . « « . . »
1. THE REQUIREMENTS PROBLEM
2. EMBEDDED SYSTEMS
3. AN "OPERATIONAL™ APPRCACH

TABLE OF CONTENTS

.

.

|

9

e e e e e e e s e e e e e e e e s e b

T

4. QUALMS ABOUT OPERATIONAL REQUIREMENTS . o « « » = ¢ ¢ o o 0 o o o 0 o 23
S. THE PAISLEY LANGUAGE . ¢ « « o o o o v o o o o 5 o o o o o s = s o o 31

6. INTERIM EVALUATION . . .
7. PLANS FOR FUTURE RESEARCH
8. CONCLUSION . « . « ¢« .« =
ACKNOWLEDGMENTS
REFERENCES . « . « « . + +

APPENDIX: A GRAMMAR FOR PAISLEY

FOOTNOTES . + ¢ o « o o o o
FIGURES . « ¢ « s o & o o o

T
A 3

O .
.« v e . . . 54
.« v e e . 54
o v e e s e e s e . . 58
. 62
o 4 e e e o . 63

Accesnion Tor

Nt1s ARl ﬁ

R o 0
v L 0

J MY
t I
L. u/

Avii-r liity Codes
s viocandfor
Dist Spovial

Al

AIR FORCE OFFICE OF SCIENTIFIC RESEAR

ROTICE OF TRANSMITTAL TO pDC o8 trse)
This technical repert has been reviewed and 1is
8pproved for public release 1AW AFR -
Distribution is uulimited, 190-12 (70}
A. D. BLOSE

Techuical Information Offiger

THE OPERATIONAL APPROACH
TO REQUIREMENTS SPECIFICATION
FOR EMBEDDED SYSTEMS

0. INTRODUCTION

Recently the study of system requirements has emerged as a major area of
research in software engineering. It has become clear that the stated
requirements for a system have tremendous impact on the quality and usefulness
of the ultimate product, and on the efficiency and manageability of its
development. Yet, despite their leverage, relatively little is known about
deriving and specifying good sets of requirements.

At the same time, the prominence of “embedded” (roughly equivalent to
“"real-time"”) systems has been increasing, due largely to hardware advances
which have made them feasible for a broader category of applications than ever
before. We will argue that embedded systems are characterized by the urgency
of their performance requirements; to the extent that all computer systems
would benefit from the ability to state and satisfy performance requirements,
even very specialized knowledge about embedded systems can be useful to
developers of other types of system.

This paper presents a new approach to the problem of specifying the
requirements for embedded systems. It offers a substantial increase in
formality, expressive power, and usefulness (in terms of the kinds of
processing that can be performed on, and the information that can be derived
from, a requirements specification) over the current widely known requirements
technologies.

This paper 1s self-contained. We give brief introductions to the
subjects of requirements and embedded systems, explain and motivate our
approach in detail, and then present a formal requirements language embodying
ic. Four systems, comprising a representative sample of embedded system
-tructu}es and properties, are used in examples throughout. Finally there |{s

an interim evaluation of the approach, and plans for future research.

1. THE REQUIREMENTS PROBLEM

l.1. The role of requirements in the system life cycle

The development of a computer system begins with the perception of a need
for 1it. During the requirements phase, analysts should arrive at a deep
understanding of that need, and propose a system to fill it. The product of
the requirements phase is the requirements specification, which plays a unique
and crucial role in the rest of development. It states what system is to be
developed, at what costs, and under what constraints.

The project cannot be a complete success unless the requirements have the
informed consent of everyone who will be involved, including members of the
development organization (designers, programmers, and managers), the
originating organization (the people who determine the cost and value of the
system: managers of an operation--if the system 1s being developed for
internal use, or salespeople-—if the system will be offered as a product), and
the ultimate users of the system. This consensus can only be achieved through
feedback and negotiation, with preliminary versions of the requirements
specification being the major vehicle of communication.

During deéign and implementation, the requirements specification defines
the "top” for top-down design, and the product toward which management effort
is aimed. At the end of development, it is the standard against which the
system i3 compared for success or failure, acceptance or rejection.

Requirements are often neglected, for reasons that are all too familiar:
lack of awareness of their importance (which is disappearing), lack of useful
requirements analysis and specification techniques, and natural reluctance to
incur costs and delays at the beginning of a project. Yet the consequences of
this shortsightedness, which 1include cancelled projects or wunprofitable
products, unhappy users, chaotically structured systems, budget and schedule
overruns as endless changes are made, and even lawsuits, are so serious that
no one involved in software engineering can afford to {ignore themn. Other
introductions to the role of requirements in system development can be found
in {Boehm 76]), [Bell & Thayer 76], [Ross & Schoman 77], [Yeh et al. 80],
[Heninger 79], (Balzer & Goldman 79)], and (Davis & Rauscher 79].

It should be noted that even with the most optimistic view of current

2. TIPSR I S

v = e

progress on requirements analysis and' specification, in which problens of
communication and complexity can be solved, certain other problems will remain
very difficult to deal with. One is that vital dectsions must be based on
forecasts of costs and even feasibility, while such forecasting is perhaps the
weakest point of our software technology. Another is that the requirements
are constantly changing, even as we try to write them down. And systems that
are used evolve continually throughout their lifetimes ((Belady & Lehman 79)),
creating “maintenance” costs which may eventually dwarf those of initial
development.

As consciousness of the economic and technical importance of evolution in
the system life cycle grows, we may develop a new concept of the 1life cycle
based on iterated (re)developments, large and small, as in [Conn 80). In such
a model, the requirements specification will evolve with the system, serving
throughout its life as definftion, documentation, and contract. Needless to
say, this expanded role will place even greater demands on the quality and
modifiability of our requirements specifications.

1.2. Goals for requirements specifications

Progress in software engineering has almost always been made fromn the
bottom up: from machine language to axiomatic specifications, for exampla, we
have proceeded first by learning to do something, and then by understandiag it
well enough to find suiltable abstractions of it. This paper takes the sane
approach to requirements. It seems unlikely that we will find really
effective techniques for requirements analysis before we know how to write a
good requirements specification recording the results of that analvsis.
Therefore we will concentrate on specification techniques (although useful
results on specification cannot help but suggest analytic methods and
principles).

The characteristics of a good requirements spectfication can be {nferred
from the things that will be done with {t. Since the latest version (to call
it a "final” version 1s to ignore the reality of system evolution) must be
obtained by iterative communication and negotiation, the specification must be
modifiable. It must also be easy for people to understand.

What would make a specification understandable? Perhaps the bhiggest
barrier to understanding large systems is complexity, and so the speci{fication

must decompose complexity in every appropriate way. Three forms of

- —— e ——

decompoaition are already familiar in varionsg contexts: abstraction,

partition, and projection (Figure 1). Abgtraction forms a hiecrarchy of
representations in which detail s suppressed at the higher levels and
elaborated at the lower levels. Partition is used to represent the whole as
the sum of its parts, making it possible to examine the parts one at a time.

Projection represents the whole, but only with respect to a subset of its
properties. The obvious example of a projection 1s a two-dimensional

architectural drawing of one view of a three-dimensional building. A
requirements specification language must support all three kinds of
decomposition, alone and in combination.

Good decomposition of complexity (procedures, data modules, monitors,
etc.) makes it possible to understand programs by reading them. The other way
that people come to understand programs is by testing them. Testing {s so
essential to programming that it seems foolish to do without {t at any stage
of development. Therefore requirements specifications should be executable,
and thus subject to validation by testing. The potential benefits are very
great, becausc executahle requirements can be “debugged”, used to put on
behavioral demonstrations for customers, turned into “"fast prototypes”, and
more (see 13.3).

Finally, a specification intended to be understood by people should be
intuitive, 1.e. 1t should be written so as to assist the menory and elfcit
tacit knowledge (see the "human factors™ section of [Yeh et al. B80; for a
survey of psycholo-ical findings concerning requirements).

The other major purpose for which a requirements specification is used is
constralning the target system of the development project. To do this well it
should be precise, unambiguous, internally consistent, and sufficiently
complete. It should also be minimal, 1.e., define the smallest set of

properties that will satisfy the users and originators. Otherwise the
specification may over-constrain the target system, so that some of the best
solutions to design problems are unnecessarily excluded.

The specification must also be used to accept or reject the final
product. 1f verification 1{is to be used for this purpose, the specification

must be formally manipulable and therefore formal (although formality has

already bdeen {implied by precision, 1lack of ambiguity, consistency, and
executability). 1If acceptance testing {s to be used, the testable behavior of

executable requirements will provide a concrete standard to which the

i v D b o s gyt

implementation can he compared.

The remainder of this paper 1is concerned with a requirements
specification approach (and language) that promises to help us achieve many of
these goals. It 1s also somewhat specialized for a particular class of

systems, namely

2. EMBEDDED SYSTEMS

Common examples of embedded systems are {ndustrial process-control
systems, flight-guidance systems, switching systems, patient-monitoring
systems, radar tracking systems, ballistic-missile-defense systems, and
data-collection systems for experimental equipment. The class of enbedded
systems is an important one, partly because it already includes some of our
oldest and most complex computer applications, and partly because it {s

expanding rapidly in volume and variety as a result of the wmicroprocessor

revolution.

2.1. What makes a system "embedded"?

The term "embedded” was coined by the U.S. Department of Defense in
conjunction with 1its common language (Ada) development project. “Embedded”
refers to the fact that these systems are embedded in larger svstems whose
primary purposes are not computation, but this is actually true of any useful
computer system. A payroll program, for instance, Is an essential part of a
business organization, which 1s a system whose primary purpose {s selling
products at a profit,

The common concept that unites the systems we choose to call “embedded”

is process control: providing continual feedback to an unintelligent

environment. This “theme” is easily recognized in ‘iight~guidance systems and
switching systems; even in a patient-monitoring system, sick patients are not
exercising their intelligence in interacting with the system, and nurses can
be viewed as providing a mechanical extension to the system”s feedback loop.

The continual demands of an unintelligent environment cause these systems
to have relatively rigid and {mportant performance requirements, such as
real-time response requirements and "fail-safe” reliability requirements. It
seems that this emphasis on performance requirements s what really
characterizes embedded systems, and causes us to be more aware of thelr
environments than we are for other types of system.*

Figure 2 shows an informal classification of systems, based on properties

that show up at the requirements level. Requirements for “support svstems"

are generally much less definite than requirements for applications systems.

—r vt

And while the performance requirements for embedded systems may be couched in
absolutes, the performance requirements for support systems will be relative
to resources and resource utilization, and the performance requirements for
data-processing systems will be relative to load, resources, and psychological
factors. The most conplex systems, such as nationwide airline-reservation
systems, should probably be viewed as having subsystems of all three types.

2.2. The special problems of embedded systems

The special nature of embedded systems exacerbates many sof tware
engineering problems, and thus demands particular attention even during the
requirements phase.

Few organizations have logged as much experience with embedded systems as
the Department of Defense, which spends 56 per cent of 1its approximately 3
billion dollar annual software budget on them ([Fisher 78)). Here i{s a
pointed summary of that experience:

Embedded computer software often exhibits characteristics that are

strikingly dgfferent from those of other computer applications. The

rograms are frequently large (50,000 to 100,000 lgnes of code) and
ong-lived (10 to 15 years). Personnel turnover is rapid, typically

Change" 13 contiRucus because of evolving Systen vequirenentso—snausi

revisions are often of the same magnitude as the original

development ([Fisher 78]).

Clearly coping with complexity and change will not be easier in the domain of
embedded systems.

In addition to the performance requirements, which have alresiv bhean
established as a major distinguishing factor, embedded systems are especially
likely to have stringent resource requirements. These are requirements on the
resources, mainly physical in this case, from which the system is constructed.
This {s because embedded systems are often 1installed in places (such as
satellites) where their weight, volume, or power consumption must be limited,
or where temperature, humidity, pressure, and other factors cannot be as
carefully controlled as in the traditional machine roon.

The interface between an embedded system and its environment tends to bhe
complex, asynchronous, highly parallel, and distributed. This {s another
direct result of the "process control” concept, because the environment is
likely to consist of a number of objects which interact with the svstem and
each other in asynchronous parallel. Furthermore, 1t 1{s probabhly the

complexity of the environment that necessitates computer support in the first

place (consider an afir-traffic-control system)! This characteristic makes the
requirements difficult to specify in a way that 1s both precise and
comprehensible.

Finally, embedded systems can be extraordinarily hard to test. The
complexity of the system/environment interface is one obstacle, and the fact
that these programs often cannot be tested in their operational environments
is another. It 1is not feasible to test flight-guidance software by flying

with 1t, nor to test ballistic~missile-defense software under battle

conditions.

2.3. Representative examples of embedded systems

The following systems, when developed appropriately, represent a wide
variety of structures and problems typical of embedded systems. They will be

used in examples throughout the paper.

2.3.1. An airline-reservation system

This {s an on-line (interactive) database system wused for airline
reservations. It 1is accessed from 10,000 terminals across the country, ani
must process an average of 200 transactions per second (these and other
quantities are taken from [Knight 72}).

Systems of this type are not always treated as embedded=-~rather, thelr
data—-processing nature is emphasized, and the users are expected to accomodate
themselves to whatever level of performance the system offers. We emphasize
its embedded-system characteristics by requiring certain absolute 1levels of
performance, and by taking the physical effects of geographical dispersion

into account at the requirements level.

2.3.2. A process-control system

This system monitors three machines in a factory; while fairly simple, it
has an interesting variety of activities. A relatively complete specificatinn
of it can be found in [Zave & Yeh 81].

Conditions local to individual machines may call for minor adjustments,
which are done automatically by the system. Conditions arising in the factorv
as a whole, however, may be quite dangerous, and are responded to bv a human

operator. The system”s responsibility is to detect these conditions and sound

an alarm.

The system also kecps Information about factory conditions, which is used
for two purposes: printing reports on production and consumption of raw
materials, and answering queries about machine and factory status from the

operator (particularly when the alarm has sounded).

2.3.3. A patient-monitoring system

Patient-monitoring systems are often used as examples Iin the requirements
literature, although the usual treatment 1is naive. (Primarily, only the
data-oriented aspects of the system are considered.) The system reads sensors
attached to patients in an intensive-care unit of a hospital. The systen
displays a warning message on a CRT screen if a sensor value falls outside of
a safe range or if a sensor appears to be malfunctioning. Interesting sensor
values are stored in a database which can be queried from the terminal. The
frequency with which a sensor 1s read, the safe range for a sensor value, and
the criteria for keeping readings in the database, can all be adjusted by

doctors and nurses from the terminal.

2.3.4. The Alr Force Weapons Effectiveness Testing (AFWET) svstem

This system (ultimately realized under the name “WESTE") was an early
real-time system which suported quantitative testing of U.S. =ilicary
(conventional warfare) capability (see Figure 3). 1Its requirements document
({Air Force 65)) 1s a fruitful source of bad exanmples and unsolved
requirements problems.

Tests were wmilitary exercises 1involving “test elements” such as
airplanes, ships, tanks, and ground defense positions (some playing the role
of enemy forces), confined to a circle centered on Eglin Air Force Base in
Florida. Test elements communicated with a central site throug: - iitary
standard radio equipment, plus a contractor-supplied communicatioas network.

During a test, moving elements would send periodic notifications of their
positions to the central site. Mock firings of weapons would also cause
messages to be sent, supplying all relevant parameters such as the direction
of aim. The central system would simulate the battle {in real tinme,
determining which of the mock firings would have resulted in "kills™. The

results of the simulation were (a) used to display the course of the battle on

10

graphics scopes for the benefit of officers in a control room, (b) dumped onto
archival storage for later analysis, and (c) used to send "kill” notifications

to "killed” test elements in the field. They would then react with a flashing

light or loud noise, and cease to participate in the battle.

2 u._.n R "

3. AN "OPERATIONAL™ APPROACH

The approach taken in this paper {s to specify the requirements for an

embedded system with an explicit model of the proposed system interacting with

~ an explicit model of the system”s environment. Both submodels consist of sets
of asynchronously interacting digital processes, although some of the
processes {n the environment model may represent discrete simulations of
nondigital objects such as people or machines. The entire mnodel (s

executable, and the internal computations of the processes are specified in an

applicative language.

We call this the “operational™ approach because the eaphasis on
constructing an operating model of the system functioning in {ts environment
provides its primary flavor. It has been embodied in a Specification Language ’
which, since 1t is based on the ideas above and is therefore Process-oriented,
Applicative, and Interpretable (executable), is named PAISLey.

In the remainder of this section, the basic ideas behind the operational
approach will be explained, illustrated, and justified in detail. Section &
addresses the apparent disadvantages of the operational approach, and Section

5 defines PAISLey.

3.1. FExplicit modeling of the environment

Figure 4 is a diagram of the processes and interactions in part of the

requirements wmodel for a patient-monitoring system. The "patient”, "nurse”,

and "doctor” processes are all digital simulations of these natural objects,
representing (obviously) only the roles played by these people with respect to
M patient-monitoring. Thus the nurse”s behavior includes onlv (a) treating a
patient because of a warning from the system, (b) adjusting a sensor because
" of a warning from the system, and (¢) interacting with the system (via the
“crt-terminal” process) in any way requested of him during interactions with a

doctor.
The “"sensor” and “crt-terminal” processes represent analog-to-digital
conversion devices. They are considered parts of the eavironment rather than
the proposed system simply because they are “given”: the contractor need not

supply them, nor can he change what they are.

- e W

.4
(3=}

The "reader” process reads (and time:tampa) gensor Jata ac intervals of
real time specified from the terminal. The "monitor” process checks the data
according to criteria specified from the terminal, sending warning messages {f
a health factor falls outside the safe range, or 1f a sensor seems to be
malfunctioning. It also sends sufficiently interesting data to the “database”
process, which responds to queries from the terminal and also purges old data
to maintain itself at a reasonable size.

Including an explicit model of the environment has several advantages for
requirements specification. The reason that the interface between an embedded
system and 1its environment is complex, asynchronous, highly parallel, and
distributed 1is that {t consists of interactions among a number of sbjects
which exist 1in parallel, at different places, and are not synchronized with
one another. Organizing these interactions around the objects (processes)
which take part in them 1{s an effective way to decompose this sort of
complexity. Furthermore, assumptions and expectations on both sides of the
boundary can be documented. The result is a specification which is far more
precise and yet comprehensible than could be obtained by treating efther side
of the interface as a "black box™, which {s what happens when the enviroament
is not modeled.

Another reason for having an environment model {s that the environment
(when construed broadly enough) is the source of all changes to the system.
Modeling it {s therefore a promising way to anticipate changes and enhance the
modifiability of both specification and target systen.

A simple, but not unimportant, example of this has to do with the
environment/system boundary. After requirements for a patient-monitoring
system along the lines of Figure 4 have been specified, it may be decided that
the contractor should supply terminals and sensors after all. The change to
the specification 1itself will be trivial, since the boundary is arbitrarily
placed, and not really part of the executable model. More Importantly, most
of the “new” analysis work will have already been done: the analysts will
understand fully (i.e. from both sides) the function of this equiprnent, and
will probably be very aware of any shortcomings that should he corrected, now
that the freedom exists to do so.

The final advantage of specifying the environment is that manvy

performance constraints are most naturally attached there. The

patient-monitoring system has (among others) response~time requirements on

.

T

—— e e e

13

database queries, and a requirement to be able to handle a certaln load of
sensors and terminals. The response requirement is most directlvy expressed as
a time limit on the component of the terminal speclfication which walits for
the response after sending a query. The load {s largely a function of the
numbers and output rates of sensors and terminals, and so speciffcations of
sensors and terminals must be a large part of specifying any load requirement.

The other significant aspect of constructing an environment model is that
it is a valuable tool for requirements analysis, as well as specification. In
fact, the best way to analyze requirements may be to start with the
environment model, and work "outside-in” to a proposed system which supports a
desirable mode of operation in the environment. The extreme case Is
automation of an exisfing manual system-—in the absence of changes to existing
procedures, the requirements can be derived simply by modeling the current
operation, and drawing a boundary to distinguish the automatable part! [Yeh
et al. 79a] and [Yeh et al. 79b) both discuss “conceptual models”, which are
models of system environments constructed for the purpose of requirements
analysis.

In the patient-monitoring system, since only the “"sensor” and
“"crt-terminal” processes interact directly with the proposed computer systen,
only these are necessary for precise specification of the system interface.

The "patient™, "nurse”, and "doctor” processes appear strictly as vehicles for

requirements - analysis. Wondering how doctors and nurses interact leads the
analyst to ask which kinds of information a doctor expects to get fren a nurse
on duty, and which kinds he would like to find in the database. Wondering how
nurses interact with patients and the display leads the analvst to ask how the
display screen should be allocated to medical histories versus emergencwy
messages, how often warnings concerning an ongoing crisis need bYe displaved,
and whether information from the monitoring system i{s needed at the patient’s
bedside. These questions are never asked (or answered) i{n the numerous
treatments of patient-monitoring systems appearing in the requirenents
literature.

Even if the analysts can achieve understanding of the requirements {n
some other way, early concentration on the environment may lead to better
communication with users (who are much more interested In their environment
than your system), and more open-minded problem-solving, unbfased by

preconceived notions or similar systems the analysts have worked on.,

USRI N

A

3.2. Processes

Another key feature of the operational approach is that the primary units
of specification are processes. A process is a s{mple, abstract
representation of autonomous (distrihuted) digftal conmputation. e s
specified by supplying a "state space”, or set of all possible states, and a
“successor function"** on that state space which defines the successor state
for each state. It goes through an infinite sequence of states (although a
"halting” process can be speciffed by having it go into a distinguished
“"halted” state which it will never leave), asynchronously with respec:t to all
other processes (Figure 5).

A process 1is cyclic, with {ts successor function describing {ts natural
cycle. The natural cycle of a process simulating a sick patient, for
instance, would be a single step of the discrete simulation algoritkm. The
successor function of such a process might be declared as:

patient-cycle: PATIENT-STATE --> PATIENT-STATE,
where the set "PATIENT-STATE", which is its domain and range and also t'e
gstate space of the process, contains values encoding possible st.ates of the
patient between gimulation steps. The natural cycle of the "Zdoctor™ process
might be to take one action, efther asking one question of a nurse, giving ine
order to a nurse, or taking part in one transaction with the
patient-monitoring system.

There can be no question about the generalitv of processes. They were
originally used as abstractions of concurrent activities vithia
multiprogramming systems ({Horning & Randell 73)), and nany recent articl. e«
have shown that they can be used to represent 1/0 devices, data nodules,
tasks, monitors, buffers, or any other ident{fiable structure within a
computer system (e.g. (Hoare 78], |[Brinch Hansen 78], [Mao & Yeh 80:}).
Process-based models of computation have been the focus of extensive
theoretical work and the language Smalltalk (([Ingalls 78}). Our varied
examples are persuasive evidence that the notion of digital simulation of
nondigital objects 1is similarly powerful in describing the environments of
computer systems.

The appropriateness of wusing processes to specify requirements for

emhedded systems 1s based on our obhservation that {n these savstens,
asynchronous parallelism--among environment objects, between environment

objects and the system, and within the system ({f only for reasons of

performance)--occurs naturally at the requirements level. One happy result of

recognizing thet parallelism, by using processes as the specification unit, {is
environment specifications which should be highly intuitive, even to nalve
users. This {s because they are populated by identifiable models of the same
autonomous, interacting objects from which the rezl world is made.

Perhaps the best way to appreciate processes 1is to consider the
alternatives: representations of processing found 1in other requirements
languages. The one wmost: commonly found 1{n requirements documents is
"dataflow”. Dataflow diagrams show major system functions, and identify the
data structures which are their inputs and outputs (e.g. Figure 6). Dataflow
is the basis of PSL/PSA ([Teichroew & Hershey 77]) and SADT ({Rouss 77], [Ross
§ Schoman 77]), and has probably been rediscovered thousands of t{mes by
isolated requirements-writers.

Dataflow may be adequate for many data-processing systems, such as the
one depicted in Figure 6. Tais is because ma jor subfunctions
("check~inventory”, "send-invoice”) are {mplemented as maior subprograms, and
subprograms are invoked in some implicitly understood sequence, whenever their
input files are ready.

Dataflow is serifously inadequate for embedded systems, however, because
control {s all-important in embedded systems, and takes a variety of forms
which are not captured by the simplistic notion of <contral implicit in
dataflow. If the system 1in Figure 6 had the “on-line” <character and
performance requirements of an embedded system, here are some of the nroblenms
we night encounter with the dataflow approach: (1) A distinction must be made
between inputs which are always present (such as the "INVINTNRY" database) and
inputs which invoke a function whenever 1 new 1Instance appears (such as
"PURCHASE-ORDER"). The situation {8 even more conplex when there is an input
value (such as the current output of a sensor attached to a haspital patient)
which {s always available, but only read at certain real-time intervals (and
the interval itself {s a variable stored 1in some system database). ()
Functions (such as "process-account-order” and "process-pavment”’) mav have to
be executed concurrently to meet performance requirements, in which case they
must synchronize their uses of shared resnurces or databases (such as
"ACCOUNTS"). (3) Functions may no longer execute 1in a predefined sequence
(because of simultaneous access from multiple terminals, the neced for internal

housekeeping, etc.), and so a complex interplay of events and states must he

":“;'j'l—“l o

i i

I

anticipated. With so many departures from the kind of {nformation direcrly
expressable 1in a dataflow diagram, 1t bhecomes less and less likely that
dataflow can provide a meaningful characterf{zation of the system.

The control arrow in SADT adds an explicit representation of control to
dataflow diagrams (an {lluminating discussion of 1its significance can be found
in [Ross 77]), but {ts {Informality prevents it Ffrom being precise or
expressive enough for embedded systems. Processes and their interactions, on
the other hand, are well-suited to the task of specifying complex control, as
would be expected from their historical origins {n the specification of
operating systems.

Other notions of control appearing 4in requirements languages are
stimulus-response paths in RSL ([Bell et al. 77], {Alford 77], [Davis & Vick
77)}) and finite state machines ([Heninger 79], (Davis & Rauscher 76]). A
finite state machine is very much like a single process--better than dataflow,
perhaps, but permitting no explicit parallelism, decompositicn of complexity,
nor modeling of the environment.

Stimulus-response paths (e.g. Figure 7) do make it possihle to decompose
the requirements and represent parallelism. The "R-net” in Figure 7 shows
explicit parallelism between "STORE_FACTOR DATA” and "EXAMINE_FACTORS", and is
only one of several R-nets specifying the entire systen. Thev do not,
however, provide for representation of data, the {nteractf{on of paths viai
data, or internal synchronization around shared data. Because the process
mechanism integrates data and processing, it {s a more complete formali=m, and
therefore more 1likely to be able to cope with a varietv of svstems .aun

situations.

3.3. Executability

In the operational approach, requirements specifications are executable.
This means that, under interpretation, the specification becomes a simulation
model generating behaviors of the specified systen.

It 1{s of vital importance to be able to interpret specificationms
regardléss of their level of abstraction. Not only are requirements by their
nature abstract Iin many respects, but they must also be developed by
successive refinements of understanding, each version of which should benefit
from this facility. We will defer until 3.4 a discussion of how this can be

done, and only deal here with the advantages of doing so.

17

Executable specifications can be tested. As mentioned in 1.2, this means
that they can be debugged by the analysts who write them, and then validated
by originators/users in demonstrations. Note that this capability i{ncludes a
"fast prototyping” facility, which is now being mentioned by many authors as a
valuable engineering tool (([Conn 80]), because the specification can be
developed to whatever level of detail is appropriate for a prototype and then
made available for use by a small community via the interpreter.

The ability to test 1is no panacea, as must be obvious from the literature
on program testing-—testing cannot demonstrate the absence of errors, it is
not always easy to get the right kind of ocutput from a test, and it is

difficult to draw any general conclusions about a program on the basis of

tests. And with embedded system specifications, there (s the additional
complication that any test must choose one of many relative-rate-dependent

process execution sequences. Nevertheless, the problems inherent in testing

programs have never caused us to give up testing them, and it seems plausible

that requirements testing, once established in common practice, would seen

likewise indispensable.

Furthermore, an executable requirements model can continue to bhe usefu!
after the requirements phase. The environment part of the model can be used 1
as a test bed during system development, which will be particularly wvaluable
for embedded systems because of the aforementioned difficulties of testing

them "in the field” (in fact, it 1s almost alwavs necessarvy to write un

environment simulator for exactly this purpose). The model of the proposaed
systen can be used to generate sample behaviors for acceptance testinn.

It is also possible to attach performance constralnts in such a way that

they can be simulated along with the functional requirements, ind this {s done

vy - —

in PAISLey. Simulaticn can then be used to predict performance where it {s
R too complex to determine analytically. This type of sinulation is an

important feature of SREM, the 1integrated set of tools by which RSL is

— - -

. supported.

There is a final, critically important, advantage of executabilitv that
has nothing to do with testing or simulatfon. It {s that the demands of
executability impose a coherence and discipline--because the parts of a
specification must "fit together” in a very strong sense--that could scarceiv

be obtained in any other way. If an executable requirements specification {is

shown to be 1{internally consistent, that means it will continue t» penerate

13

behaviors without ever halting, deadlocking, or going into an undefined state.
In other words, it ls guaranteed to be a valid specification of some systenm
interacting with some environment. Clearly this 1{s the utmost that any
formally defined notion of internal consistency could do for us, since
deciding whether they are the right system and environment i{s a matter of
validation by the origlinator/user, or verification of consistency with

externally defined axfoms of correctness.

3.4. Specification in an applicative language

Within a process, computation (i.e. the successor function of the
process) 1s specified using a purely applicative language. “Applicative” (or
“functional”) languages are those based on side-effect-free evaluation of
expressions formed from constants, formal parameters, functions, and
functional operators ("combining forms” for functions, such as conposition).
Well-known examples of applicative languages are the lambda calculus, pure

LISP, and the functional programming systems of {Backus 78].

3.4.1. Advantages of applicative languages

Applicative languages are currently receiving a great deal of favorable
attention because of their numerous theoretical and practical advantages
([Backus 78], (Iverson 80], (Smoliar 80], (Friedman & Wise 77!, ([Friedman &
Wise 78a}, [Friedman & Wise 78b), [Friedman & Wise 79], [Friedman & Wisc R80j,
among others), most of which can be exploited in requirements specifications.
To begin with, because applicative languages are interpretahlie, thev support
the executability property: processes are executed by repeatedly replacing
their current states by successor states, and successor states are discovered
by interpreting the applicative expressions which define then.

For purposes of high~level specification, the most important property of
applicative languages {s their tremendous powers of abstraction, {.e. of
decision deferment. Consider, for Instance, the functional expression

"f{(g{y),h[z])]", which says that the function "g" is to be applied to the

argument "y” and "h" is to be applied to "z" (the “[] s'mbols denota

function application or coaposition), and then “f” is to be applied to their
values (the "()" symbols are used to construct tuples of data). But it dones

not constrain the data, control, processor, or other resource structures used

to do so. Are "g[y)"” and "h[z]" evaluated sequentially or ian parallel? In
what data structures are their values stored? Perhaps the arguments "v" and
"z" are even shipped off to special “g”- and "h"-processors, respectively, at
different nodes of a network!

Furthermore, a primitive function has several interesting
interpretations, all of which enable additional decompositions of complexity.
A prim{tive function can represent a set of deferred decisions, to bhe aade
later by defining the function in terms of simpler primitives. 1t can also
represent a mapping which will always remain nondeterministic from the
perspective of the requirements model, because it depends on factors outside
the scope of the model. For fnstance, in specifying a terainal we aight
declare a primitive function

think: DISPLAY --> INPUT,
where "DISPLAY" is the set of all CRT screen images and "INPUT" is the set of
all input lines, to represent the human user”s thought processes. Finally, in
PAISLey a primitive function can be an abstraction for an asynchronous process
interaction (see below). Because of these many options, applicative languages
have been used successfully to describe phenomena ranging in level of
abstraction from digital hardware to distributed systen requirements
([{Fitzwater & Zave 77], [Smoliar 79)).

An {nterpreter for an abstract specification language makes expedieat and
non~functionally-significant deci{sions ahout such matters as control and space
allocation. The only other thing needed for interpretation is sonc sort of
implementation of functions and sets 1left primitive {n the abstract
specification. This can be done in many ways, perhaps the simplest of which
1s: (1) any evaluation of a primitive function whose rance {s not primitive
ylelds either a randomly chosen, or a "smallest”, element of the vrange; (2)
any primitive set {s temporarily defined to be the set "FILLER", whoso ounlyv
element is the constant "“null”™” (thus any evaluation of a primitive functlion
whose range (s primitive necessarily yields "“null”"). ""null”™" is ~ften used
as a place~holder where a value must be generated but no <cmant{cs aeed ‘e
carried. Another way to 1interpret primitive functions {s to displav their
arguments at a terminal and ask the analyst to supplv a value, thereby
creating an interactive testing system. In e{ther case, the effect {s to
simulate the decisions which have been made, without ({nterference from the

decisions that haven”t been made.

e e — = e -

Another advantage of applicative languages {s that they are extremely
convenient for formal manipulations such as verification. This i{s because an
expression has "referential transparency”, i.e. its only semantic property 1is
its value. An applicative program can sometimes be proven consistent with an
axiomatic specification of correctness, for example, merely by algebraic
substitution! This facility is one of the major subjects of [Backus 78].

One advantage of applicative languages that will not be exploited for
specifications of embedded systems 1is that as programming languages,
applicative languages may have more potential for efficient implementation
than procedural ones. Because the "von Neumann bottleneck” of accessing and
refefting to memory one word at a time has been eluded ([Backus 78]), the
field i3 clear for high-powered optimization by interpreter writers and
machine designers. The work of Friedman and Wise on large-scale
multiprocessing ([Friedman & Wise 78a]) and research on dataflow computers are
both efforts {n this direction; neither form of parallelisam requires the
knowledge or participation of the programmer.

Embedded systems do not profit directly because they may have
performance, accessibility, distribution, etc. requirements which can only be
simulated (but never realized) by an interpreter running on a conventional
shared coamputer system, even though that {nterpreter might provide 2
convenient and efficient {mplementation for other types of system. For

embedded systems, interpretable specifications are clearlv distingsuishabie

from implementations by their performance and resource prorerties, desplte

functional equivalence.

3.4.2. PAlSLey as an applicative language

PAISLey is not a purely applicative language because states in general,
and process states in particular, are not applicative coucepts. Systen
specifications can be written in a purely applicative notation, as in [Smoliar
79] and (Friedman & Wise 79]. In [Zave 80a] it is explained that, while miny
aspects of even embedded systems can be specified applicativelv, the
specification of most performance requirements, real-time interfaces with the
environment, and certain resource requirements, all necessitate the
introduction of some non-applicative structure such as processes.

Furthermore, processes may offer a helpful form of decomposition of complexity

not available in purely applicative languages when feedback loops are present.

This will be particularly fmportant with our requirements specifications for
embedded systems, in which representation of the feedback provided by the
proposed system to the environment 1s a primary objective.

Since PAISLey is a blend of the applicative world and the non-applicative
world of processes and states, the "seam” must be a smooth one. The two
worlds meet at the mechanism for interprocess Iinteraction, which |{s
necessitated by the existence of processes, but designed to fit smoothly into
the applicative framework. Interactions take place through a set of three
primitives called “"exchange functions” which <carry out the side-effect of
asynchronous interaction, but look and behave locally (intraprocess) exactiv
like primitive functions. Exchange functions are defined and explained in
5.3. They are a wunique mechanism which seems to fulfill our purposes verv
well, and also offer an interesting new perspective on asvnchranous
interaction mechanisms for distributed processes.

Applicative languages have a reputation for unreadabilitv, and general
unsuitability for large-scale software engineering, 1{in some circles. We
believe that this reputation is due to typelessness and recursion, neither one
of which is present in PAISLey.

Recursion is what purely applicative languages use to specify repetitive
computation, and {s analogous to looping (iteration) in procedural laaguages.
Both are analogous to the repeti{itive application of a successer function ta
produce successive process states, which 1s how unbounded repetition is
specified in PAISLey.

In most applicative languages, the only type of data obiect iz the ‘isr
or sequence, and all functions are applied to one list and produce one list.
Since every function should be prepared to accept arpument lists of anv
internal structure, there must be a distinguished "undefined” value produced
whenever the internal structure of the argument {s unsulted to the semantics
of the function (as in [Backus 78])--and this mismatch must first be detected!
Multiple arguments to or values from functions must be packaged In single
lists, yet the existence of this gubstructure (or any other substructure, for
that matter) cannot be explicitly acknowledged.

0f course, deliherate substructure In data items {s ublquitous, and {t s
common practice to ¢ .ument {t with the wuse of data :Ivpes. Furthermore,

typing in a language provides a useful form of redundancy which Is susceptible

to automated checks of internal consistency.

[BS)
o

In PAISLey non-primitive sets can be defined usiug set union ("A U B"),
cross-product ("A x B"), enumeration ("{ “true”, “false” "), and
parenthesization. The domain and range sets of every function, primitive or
not, must be declared (although a function need not have arguments). The
domain and range declarations can use arbitrary set expressions. Here are
three example declarations:

f: ~-—>4;

g: BxC-~-—>DUE,;

h: S =-—=>T.

When a function is applied to arguments, their types must be consistent
with the domain declaration of the function. Consistency can be defined with
the assistance of type conversion, however, so that the composition “h[g[f]}"
is perfectly legal if the definitions:

A=BxC;

S = INTEGERS;

D={0,2, 4,6, 8]);

E={1,3,5,7,9}
have been made. Thils notion of typlng provides all the documentation and
redundancy desirable for engineering goals, without sacrificing any of the
flexibility attributable to typelessness. All that it requires i{s the ability
to compare any two set expresslons for containment, which is easily done givern

this particular language of set expressions.

4. QUALMS ABOUT OPERATIONAL REQUIREMENTS

Despite the obvious advantages of operational requirerents, one cannot
help but have certaln reservations about the idea. 1In this section we exancine

its apparent disadvantages.

4.1. Encroaching on design

Aren”t operational specifications actually design specificatinns rather
than requirements specifications? This question 1Is often prompted by =he
precision, potential for detail, and executability of cperatiznal
specifications.

Traditionally, it is said that requirements state what is to be done, and
a design states how to do it ({Ross & Schoman 77]). 1In other words: Froperis,
requirements specify the functional and performance properties of a syvsten,
where both “functional” and performance properties are characteristics ~f tre
system as experienced by 1ts environument, but the functicnal caes are

expressable In terms of digital logic, while the perfernance propertios

concern such physical concepts as time (see 5.4). Design thexins when the
resources from which the system is to Ye constructed are {atraduced. Svztern
design 1s a matter of managing scarce resources to aeet perfarasncs noals.

Adopting this definition of the boundary betwecn requirenents and de<ign,
a requirements specification does not stray into desipgn i1 ani onix 17 [t
avoids managing resources, elither explicitly or tmplicitiv. @2AT%Lcy enabivs
the requirements analyst to do this, as i{llustrated by the requirenents for
the process-control system, the process structure of which s shown in Fi,ure
8 (process interactions are labeled with the type of information that s
transferred).

Here the environment is specified by processes sinulating the throe
machines, the line~printer, and the human operator. (The ecnvironment relevant
to requirements analysis may extend further tharn this, {nacludiag, for
instance, the people who use the reports and their {intended jpurpeses.d The

"machine-monitor” processes tend to thelr individual maichiars, teading the

sensors and providing immedfate local feedback. These npracesses 1lso saas

data along to the “factory-monitor”™ process, whirh keeps track a7 s1-bal

l?- | ~

o
o~

conditions and alarms the "operator” when necessary. All monitoring processes
send selected data to the "database”, which answers queries from the

“operator” and the "report-generator”.

Note that no resources are explictly represented in this

specification--all of the 1internal processes are derived directly from the

various system functions. We will now argue that nelther the process
structure nor the structures inside processes place implicit constraints on
resources.

Nowhere {s the difference between requlrements and desizgn nore apparent
than in the requirements principle of "sufficient processes”-—use as many
processes as performance analysis and functional decomposition suggest. The
machine monitors are separate from each other because each must synchronize
itself with a different (asynchronous) machine, and the factory wmonitor
performs a different function altogether. The report generator is a separate
process from the database because the database has real-time response "
requirements and the report generator does not. It is likely that in the
design for this system, all of these processes will be implemented bv
time-multiplexing a single physical processor. The processor will be a scarce B
resource, and must be allocated (perhaps using priority interrupts) so that
the performance requirements on all processes will be nmet. Thus partitinon

into processes 1s a way of expressing relationships having to do with

PR

functionality, synchronization, performance, etc., and not Tesource
allocation.

Within processes, we have already discussed the nonconstraining nature of
applicative expressions. The handling of states 1is 1likewise nonconmittal. .
Consider the "database” process: its state space is "DATABASE", the set of all
possible process=control databases, and its successor function is
“database-cycle”. "Database-cycle" processes one input, be it a data update : f
or query, and produces as its value a new member of "DATABASE", which replaces ;
the old process state at the end of the process step. j

There are many ways to update a database. Two of the obvious i

i

possibllities are to mnodify records in place, or to create an entirely new

{
copy and then over-write the old one. The former is more efficient but only h
works well for relatively static data structures; the latter i{s more flexible H
but expensive, and alsn more amenable to reliability measures--the old

database 18 not destroyed until the new has been successfully conpleted.

.~ - ‘ A

25

These and intermediate nossibilit{es, differ{ng in thelr rescurce allocation

and performance characteristics, are equally well subsumed by the abstract
mechanism of state replacement.

This view of requirements is elegant and satisfying, but it {s not the
whole story. Pragmatically, a requirement is any property of the proposed
system that is necessary to satisfy the originating organization of the
acceptability of the system, and these properties may very well include
decisions about resources. Use of a particular computer or software subsysten
may be required because the originating organization alreadv owns {t, and
managenent {Insists that it be used. There may even be a requlirement that the
system must fit into a particular amount of memory; this might be the case,
for instance, 1{f the system {s a monitor of experimental equipment, and shares
facilities with other experiments on a satellite. The amount of memory in the
on-board computer allocated to each experiment {s an administrative decision
which must be made (at least tentatively) before work on developing the
individual experiments can begin.

The reality i{s that a system develops through a hierarchy of decisions,
each decision constraining those bhelow 1t in the hierarchv. Yo svstem {.
developed i{in a political or economic vacuum, and almost no systea perioras its
function without interfacing with any pre-existing conputer svstem; as a
result, some decisions are made prematurely or nonoptimally compared to some
theoretical decision procedure based on technical grounds alonc. Thus, even
though resource decisions are premature at the requirements level, anv
requirements language which {s unable to record them will bhe terribly fragile,
performing adequately only in the most idealized of situations.

PAISLey can record resource decisions because resource structures are
like any other structures occurring in digital systems. Thev can definitelv
be specified {f there is a general model of digital computation, which PAISLev
offers. Hardware and software modules, for instance, can be specified as
processes, and then Included as part of the envirenment of the proposed
system. This {s a great strength of the operational approach~-the promfse of
no unpleasant surprises when new applications or economic cﬁncext: are
encountered.

The ultimate test of whether or not a dJdecisfon belonps {in the
requirements {3 whether or not the system could feasibly de ronstructed in anv

other way. This criterion can be {llustrated bv several {eatures of the AFUET

system.

The first requirements problem is that the system is required to use a
military standard radio link for communication between the test elements and
the contractor-supplied part of the communication network.*** This {s a
classic example of a (premature) resource requirement, since the requirements
should confine themselves to the necessity of (and performance constraints on)
communication, and let the contractors determine the best method. But
accepting the {nevitable, we specify the existing radio link as part of the
environment of the proposed system (Figure 9).

The next problem concerns the times to which event messages from test
elements (new positions and weapons firings) refer. The central system must
know these quite accurately to do meaningful simulation, but {t cannot {infer
the times at which they were sent from the times at which they are received,
because delay in the ground communication network 1s sure to be long and
erratic.

There seems to be only one solution to this problem: put timestamps on
the messages when they arrive at the radio towers (until that point the delay
is small and stable, due to the dedicated radio channels). 1If true, there is
nothing wrong with specifying even this very design-like decision in the
requirements (Figure 10).

Note, however, that this operational requirements specification {s still
quite different from a design for the system. The specification of the
"radio-tower” processes will show that they all get current times by

requesting them from the ‘“real-time~clock” process, which "ticks” once per

process step. The asynchronous {nteraction point within the radio towers will
at first appear as the primitive function:

current-time: -~--> TIME.
The necessary performance requirement will be specified as:

current-time: “time ~-~> maximum is 1 microsec”.
This means that "current-time” must be evaluated, by interacting with a global
clock, in one microsecond or less in all radio towers. The design to ment
this requirement will probably involve accurate local clocks which are
synchronized via some protocol before each test begins.

Finally, we must consider exactly what 1is meant by “"real-tinme
simulation”. Is the simulation event-oriented? Is each incoming message

processed as {t arrives? What 1if a late-arriving message contradicts

e el — -

comathing that has already been conpured? (The latter could happen {f, in the
ahsence of a recent positlon mesaage, the avaten axtrapolated the current
trajectory of a test element; the late-arriving message could show that {t had
swerved.)

With existing levels of technology, it is not feasible to build a svsten
which performs simulation of this complexity, in anything close to real time,
and backtracks on the basis of belated evidence. Therefore it {s not
over-constraining any feasible design to put a "no-backtracking” policy into
the requirements. Also, the simulation must be oriented toard slices of time
rather than events because a shell in flight presents a continuous threat over
some period of time. The discipline 1imposed by the operational approach
forces us to understand these issues before specifying the requirements for
the central simulation facility, which is done as follows.

The relationship between simulation time and real time is shown in Figure
11. The test 1s viewed as a sequence of “frames”, or snapshots, each
containing the positions of all active test elements. The "granularity” g of
the gimulation is the interval between frames. The granularity must be at
least as long as the time it takes to compute a frame, or the simulator will
fall increasingly far behind.

Let d be the projected maximum delay {in the communication network. Then
computed frames can be produced with a steady real-time delav of d +« 2. In
computing the frame for time t, the simulator waits until t + d to mnake sure
it has received all messages sent at t or before (messages arriving late:r than
this will have to be ignored), then computes the frame to be ready at t + J =
2. The quantities d and g will be incorporated into performance rejuirements,
of course.

This {s carried out by the process structure shown 1in Figure 12. The
simulation 1is clocked by the "input-buffer” process, which cnllects messages
continually but hands them over to the simulator in batches at {rtervals of ,.
Each step of the “simulator” process computes a new frame from the old frame,
a batch of messages, and various threat and target models. It also produces a

batch - of "kill” wmessages, which are transmitted by the “output-buffer”
process.

4.2. Too much precision

There can be little question that specifications written in PAISLey are

too precise, and based on too many technical principles, for customers, cud
users, managers, and other untrained personnel to understand.

. At the same time, their rigor can be invaluable to the trained analysts
who will write them (this is based on numerous experiences of h:ing conironted
by surprise with the vagueness of my own ideas about a system). Informal
analysis must always come first, but we have not yet fully exploited the
potential of formal languages for expressing approximate or incomplerte
knowledge and real-world concepts.

There is not really a conflict here, simply because nontechnical people
do not have to use the same representations that the analysts do. Analysts
can communicate with them using diagrams, simplifications, narrow views,
partitions and projections, etc. derived from the current PAlISLev
specification. The process diagrams (Figures 4,8,9,10,11) are nicely visual
and seem fairly intuitive, for {Instance; it is also likely that dataflew
diagrams could be used to show major computations without bothering about
timing and control, and that semantic nets, which are used in [Mitterme{r AC}
and [Yeh & Mittermeir 80] to represent data structures, could be used for the
same purpose here.

Anong the most popular and successful features of SREM (RSL) and PSL/PFSA
is that specifications are stored 1in a database from which a variety of
up~to-date reports can be generated automatically. We envisfion PAISLev :
being {nstalled in such a database, and “ope that user-oriented repor:s and
diagrams could 1likewise be produced by tools running on the current

sperification.

4.3. Interface with data-oriented specification techniques

Other researchers have investigated the problem of requirements Ior
data~processing systems, wusing as a starting point for their formalisms
database languages, 1.e. languages originally developed to describe the
“conceptual schemas” (abstract, virtual, semantic structures) of databases.
The notion that a requirements model should be an explicit representition of
the proposed system interacting with its environment has also been derived in
this context, but with a completely different type of specificatinn for the
model. A philosophy of data-oriented modeling 1s presented in [Baizer &
Goldman 79}, while [Yeh et al. 79b], [Roussopoulos 79], and iMittermeir A0
exenplify it. {Smith & Smith 79] defines a particular data=nriented

P

specification language designed to have all the generalitv, flexibilftv, and
power needed for complete specification of systems from a data-driven
perspective.

It is clear that a data-oriented technique {s a more natural way than
using PAISLey to develop requirements for data-processing systems. Yet data
is a vital part of any system, and cannot be {gnored by any recuirements
technique. It {s our purpose here to show that process-oriented PAISLey
specifications and data-oriented specifications are both based on the
underlying model shown in Figure 13, and can potentially be compatible and
even complementary. Then analysts will be free to use efther or bdoth (in
parallel) as the application and phase of development sugpest.

In both approaches there are data items which reflect the state of ‘the
relevant part of the environment and the state of the systen. The basic
relationships among data {tems are even the same: In data-oriented languages
data items are organized into types, and types are related by “"generalizatinn”
(a type/subtype hierarchy) or “aggregation” (a "component-of” hierarchy). In
PAISLey set membership provides typing, set union provides generalization, and
crogs~product provides aggregation.

Thus {f the collection of process states in a PAISLey specification 1is
viewed as a database, it differs from a "normal” database only in having a
somewhat restricted structure. Furthermcre, the restrictions are tailored t»n
the nature and needs of enmbedded systems. Specifically: (1) {ts size is
fixed, (2) {t 1s divided into a fixed vector of components (process states),
and (3) no item is a component of more than one iten.

Restrictions (2) and (3) come about because the specification 1is to be
interpreted as a vector of autonomous distributed parallel computations (the
latter prevents one {tem”s being shared between process states). Restriction
(1) 1s based on the philosophy of PAISLey (see 5.1), but its acceptability
reflects the nature of embedded systems--because of the close {nteraction
between an embedded system and 1its environment, the environment {s stable
rather than transient. Consider, for example, the processes representing test
elements in the environment of the AFWET system. Presumably a4 large and
open-ended set of planes, tanks, ships, etc. might eventuallv be used in
tests, which would 1indicate a large and open-ended wset of environnent

processes. But the requirements document puts a definite limit of 26 on the

number of test elements active at any one time, and implies that each 1is to

r——

30

have a dedicated radio channel. 1t makes much more sense to construct the
model with 26 test-element processes “hard-wired” to their channels, and
consider the assignment of test-element processes to physical test elements to
be outside the scope of the system.

A nice example of the contrast between data-processing and embedded
systems 1is afforded by an ailrline reservation system, which has aspects of
both. 1In the requirements model to be used in Section 5, the environment of
an airline reservation system consists of nothing but processes representing

terminals, of which there are a fixed number. Terminals are the only parts of P

the environment that are relevant to this coonunication=~ and

synchronization-oriented PAISLey specification. The data-oriented

P

requirements model in [Yeh et al. 79a], on the other hand, interprets the]
environment of an airline reservation system to consist of entities such as {
airplanes, passengers, flights, and reservations, because these are the :
environment entities reflected in the contents of the svstem”s database. Note '

that a fixed size would not be appropriate here.

To return to Figure 13, in models from both approaches there must be
computations which update states and interact with (or cause) other
computations. Here the situation is one of complementarity rather than
compatibility. Database languages specify data updates and retrievals,
gometimes informally, but usually with a syntax based on the predicate
calculus. They do not specify explicit concurrency, communication, ot
control. PAISLey, on the other hand, lends itself to specifications Iin which
data manipulations are left primitive (although the work in [Frankel 79) mav
lead directly to a marriage of functional and database concepts). We are
optimistic about the possibility of defining an interface between the two
types of speci{fication so that decisfons made {n one could be translated into
the other. -

31

5. THE PAISLEY LANGUAGE

In this section full details of PAISLey are presented, {ncluding a new
mechanism for process interactions, and specification of performance
requirements. An LALR grammar for PAISLey in BNF form can be found in the

Appendix.

5.1. Language philosophy

PAISLey 1s intended to be simple. 1In particular, only features which are
directly associated with run-time semantics are included.

For production purposes the language must be supported by a system which,
{n addftion to storing specification fragments and collecting them Iinto
executable configurations (not to mention providing tools for static analysis
and report generation), offers such conveniences as scopes, versions, macros,
parameters, libraries, meta-notations, etc. The current frenzy of research on
“programming environments” makes it plain that the design of such an
environment is not a trivial task, and should probably not be undertaken
simultaneously with development of the specification semantics.
Specifications prepared using any of the above features would be translated
into PAISLey (as currently defined) before interpretation.

Stylistically, PAISLey follows APL in using distinct symbols for dJdistinct
operators (but has far fewer of them!). This leads to a concise notation |in
which essentially all words are user-chosen mnemonics. 1In tnis decision and
the one above, we apply exactly the same philosophy as {Hoare 78}.

One other important principle is that every operational structure must he
realizable with a bounded amount of resources (time and space). There is a
bounded number of processes, no process state can require an unhounded amount
of storage, and no process step can require an unbounded amount of evaluation
time.

The purpose of this is performance, {.e. making it possible to design
systems qhich are guaranteed to meet their performance requirements. Clearly
if a computational path contains an unbounded loop, or may have to construct a
data structure of unbounded size, no guarantee that it meets an absolute time

congtraint {s possible. In PAISLey the only unbounded "structure” i{s the

RSt dnbainsen e e et s ——————— o aa

Ziam =

infinite succession of process steps of each process, and this one exception
cannot be avoided.

The static system structures which result from the boundedness principle
will greatly facilitate proofs of internal consi{stency, correctness, and other

formal properties.

5.2. Sets, functions, processes, and systems

Statements in PAISLey are delimited by semicolons, and comments are
enclosed in double quotation marks.

Names are typed for greater readability. The names of functions are
always in lower-case letters, and the names of sets are always Iln upper-case
letters (hyphens and integers may be used in either, but they mus begin with
alphabetic strings). Constants are elther numbers, or strings enclosed in
single quotation marks.

There are four klnds of statement: system declarations, function
declarations, set definitions, and function definitions. Since a system {s a
fixed**** pyple of processes, we use the tuple-~construction notation for
system declaration. A process is declared using a function application which
applies its successor function to an expression evaluating to 1its {initial
process state. Thus a sgystem consisting of four processes, three being
terminals and the fourth being a shared database, would be declared as:

(terminal-l-cycle

terminal-2-cycle[blank-display

terminal-3~cycle[blank-d{splay
database=-cyc e[initial—database]

blank-display

’
»

where the following domain-range declarations would be appropriate:

terminal-l-cycle: DISPLAY ~--> DISPLAY;

blank~display: ~--> DISPLAY;

database-cycle: DATABASE ---> DATABASE;

initial-database: =---=> DATABASE.
Terminal processes have the contents of the current displays as thelr procees
states. Note that there is no explicit naming of processes or syvstens; this
would undoubtedly be added as part of any “environment” facilities.

Function declarations give properties of functions, and may therefore he
redundant for nonprimitive (defined) functions--when the properties are also

deducible from the function”s definition, Declaraticrns of nonprimitive

s

I ——

functions can and should be checked for consistency with thelir definftions.
All function declaration statements begin with the function name and a colan;
what follows {s either a domain~range declaration, of which we have seen many,
or a performance property (see 5.4).

Set definitions define set names in terms of set expressions, which use
set union, cross—-product (which has precedence over union), enumeration, and
parenthesization (all shown in 3.4.2). Note that the size of all data
structures 1s bounded, because all tuples (members of sets defined by
cross-product) have a bounded number of components.

Function definitions define function names in terms of function
expressions, and may use formal parameters, even structured parameter lists,
to do so. Here are some possible beginnings for function definition
statements:

new-func-1 = . . . ;

new-func-2{p] = . . . ;

new-func-3{(p,q)] = . . . ;

new-func=4{(p,(q,(r,s)))] =

Formal parameters have the same syntax as function names; the argument
structure must, of course, agree with the function”s domain declacation.

Function expressions may wuse function nanes, formal parameters,
constants, applications of functions to arguments, tuple construction, and
condit{onal selection. Conditional selection (like the LISP “cond”) has the
syntax “/pl:fl, p2:f2, . . . “true”:fn/", and evaluates to the value ol the
first functional expression "f{i" such that the predicate (Boolean-valuea
functional expression) "pi” evaluates to "“true””. Note that there iz ao
unbounded iteration, such as would be provided by "while . . . do . . .7, nor
is recursion allowed. Bounded iteration can bhe specified usiny conposition.
The result is that the number of primitive operatinns to evaluate any

As a simple example, consider the following specification of <the
successor function of a process representing a CRT terminal:

terminal~cycle: DISPLAY -—> DISPLAY;

terminal-cycle{d] = display{display-and-transact{{(d,think-af-requnest)l},

think-of~request: =--~> RFQUEST;

display~-and-transact:
D%SPLAY x REQUEST =-=~=> DISPLAY x (RESPONSE ' ERROR-MESSAGFY;

display-and-transact[(d,r)) = (display[(d,r)],transact{r);

4

34

transact: REQUEST =--> RESPONSE U] ERROR-MESSAGE;

display: DISPLAY x (REQUFEST (I RESPONSE U ERROR-MESSAGE) =-=> DISPLAY.
The process handles one transactlon per process step, reflecting hoth the
request and the response in the display. The primitive function "displav” can
carty out scrolling or whatever other formatting 1s desired.

Even aiming for a minimum of conveniences, {t is impossihle to do without
some feature for defining groups of nearly identical ftems. In PAISLev this
is done at all levels using the same index notation, as seen In:

VECTOR = #1..10< x INTEGER >,
which defines members of the set "VECTOR" to be 10-tuples of integers. Index
notation always denotes a sequence of the expression in angle-brackets, with
the first symbol in the brackets used as the sequence delimiter. The integers
after the "/" give the lower and upper bounds of the sequencing count. The
only index notation without a delimiter symbol {s the one for bounded
functional composition (application), which makes "#1 .. 3 < func > [{arg}”
equivalent to "func|[func[func[arg]]]”.

In most cases what we want is a group of statements or expressions which
differ slightly. This 1s done by operating on names, which are defined so
that "syllables™ (alphabetic substrings delimited by hyphens) are scmantically
meaningful. If the header for an {index notation begins with a “svllable”
before the "#", any syllable matching it in a name in the repeated expression
will be replaced by successive integers from the lower bound to the upper
bound. Thus:

BIG-SET = J#1..3< U LITTLE-SET-J >
is equivalent to:

BIG-SET = LITTLE-SET-1 U LITTLE-SET-2 UU LITTLE-SFET-3,
and the system declaration:

(k#0..9999¢,terminal-k~cycle|{blank~display]>,

database-cycle{initial-database]
creates a system with 10,000 terminal processes (an airline reservation
system!), where the successor function of the thirteenth one s
“terminal-12-cycle”.

Index notation can even extend over groups of statements. Suppose we
want our 10,000 terminals to be identical, except that some identification
must be built into "transact”, the primitive function whose elaboration will

send to and receive from the central system. This can be done bv making

35

slight modifications to the terminal specification already glven, as follows:
k#0..9999 '
< ; terminal-k-cycle: pISPLAY -—=> DISPLAY;
terminal-k-cycle[d] =
display-and-transact((d,r)] = (display[(d,r)],k-transact(r});
k-transact: RESPONSE ---> RESPONSE U ERROR-MESSAGE;

>.

5.3. Asynchronous interactions

5.3.1., Definition of exchange functions

Asynchronous interactions between processes are specified using three
primitive functions known collectively as "exchange functions”. An exchange
function carries out two-way point-to-point mutually svnchronized
communication. It has one argument, which provides a value to be ~utput, and
always returns a value which was obtained as input. Thus within the process
an exchange function looks like any other primitive function; it has, howvever,
tne side-effect of carrying out a process interaction. By making {nteraction
primitives masquerade as functions, we achieve compatibility with applicative
notat{ion.

An exchange function whose evaluation has been inftiated Interacts bv
"matching” (to be explained) with another pending exchange function. The tw>
exchange arguments and terminate, so that each returns as its value the
argument of the other.

Each exchange function has two attributes to be specified, namelv a tyrpe
("x", "xm", or "“xr") and a channel (a user-chosen i{dentifier which has the
syntax of a function name). The exchange function with tvpe "x” and chanael
"chan” 13 named “x-chan”, the exchange function with tvpe "xr” and channel
"real-time"” 1{s named "xr-real-time”, etc. Only exchanpe functions with the
same channel can match with each other.

The “x" is the basic type of exchange function. It can match with anv

other pending exchange function {n its class, {ncluding another of ivpe "x7

If no other exchange {s pending, {t will wait until one {s. 1f there are
several pending match possibilities, a mitch will he chosen
nondeterminist{ically, with the proviso that there wmust bhe no lockont (a4

36

situation where a pending exchange waits {indefinitely while {ts match
opportunities are given to other, more recently evaluated, exchange
functions).

Competitive sgituations occur {In most systems. To enable succinct
specification of them we have exchanges of type "xm”, which behave exactly
like "x"“s except that two "xm"“s in the same class cannot match with each
other. They can then compete to match with an exchange of some other type, as
the examples will show.

Embedded systems typically have real-time interfaces, especlallv with the

processes in their environments. To specify these we need a third type of
exchange function, the "xr", which behaves like the others except that it will
not walt to find a match. If evaluation of an "xr” is initiated and there is
no other pending exchange 1Iin 1{ts «class, the "xr" terminates Ilamediately
without matching, returning 1its own argument as its value. It {is alwavs
possible to determine whether or not an "xr"” matched by giving it an argument
distinct from any that it could obtain by exchanging. ’:

Figure 14(a) shows the possible matches of exchange types within a class.
Figure 14(b) (from [Friedman & Filman 80]) shows the derivatiocn of the three
types. There must be both fully synchronized primitives ("synchronizing™),
and also those which do not synchronize themselves ("free-running”). There
must be exchanges which can match with their own kind, and those that compete
with thefr own kind. This makes four possibilities, except that 4
free-running type which exchanges with {ts own kind would be f{apnssible,

because it would require "matching” two simultaneous, instantaneous events.

5.3.2. Examples of fully synchronized interactions

In this sectlion we will wuse exchange functions to specify the
{nteractions between transaction-processing terminals and the central
database. "Transact” in the terminal specification is elaborated as follows:

transact(r] =
receive~response{send-requestir]];

send-request: REQUEST ---> FILLFR;
send-request(r] = xm~requ{r];
receive-response: FILLER —--> RESPONSE U ERROR-MESSAGF;

receive-response[‘null”|] = x-resp[“null”]),

- — -

and the database process successor function is specified as:

!
g
a
|
!
e

database-cycle([d] =
finallze~transaction[perform-transaction[(d,receive-request)}];

receive-request: ---> REQUEST;

receive-request = x-requ(null”};

perform-transaction: DATABASE x REQUEST —---> DATABASE = RESPONSE;

finalize~transaction: DATABASE x RESPONSE =---> DATABASE;

finalize-transaction{(d,r)] = proj-2-1[{(d,send-response(r})];
send-response: RESPONSE ---> FILLER;

send-response(r] = x-resp{r].

By renaming (redefining) the exchange functions with mnemonic names, we are
also able to type thelr domains and ranges. Exchange functions thenselves are
typeless because they must handle all types.

"Send-requegt” in a terminal and "receive-request” in the database match
with each other to transmit the request. Note that the type "xn”"s in the
terminal compete for the type "x" in the database; 1if nothing but "x"7s were
used, two evaluations of "send-request” might match with each other! Since
the "xm” and "x" are symmetric with respect to synchronization, either =av
have to wait for the other.

After the request Ls processed against the database,
"finalize-transaction” disposes of the results. It {s defined {n terms of the
{ntrins{c function “proj-2-1", which projects an ordered pair onto its Zirs:
component, in this case the updated database. The second ccaponent is
evaluated only for 1ts side-effect of sending the response back, and the
"“null”” value {t returns i{s thrown away.

“"Receive-response” could have been defined using tvpe "xa”, dut an "x7 iz
also correct, because precedence constralnts eaforced by the functinnal
nesting of “send-request” 1inside "receive-response” ensure that at most one
instance of "receive-response” will be in evaluation at anv one time, nanelw
that of t'» p.ccess whose request {s now being processed. Thus matching in

the class "resp” 1s always unique.

5.3.3. Examples of free-running interactions

A "free-running” process is one whose only finteractions occur via “xr”,
so that it will never walt to synchronize with another process. The
prototypical free-running process 13 a real-time clock, whi~h "ticks” once per

process step, and could not fulfill {ts {intended functisan {7 it had anv

(WP

synchroni{zing {nteractions. Such a process {s :pecified:

(clock-cycle[O], . . .); .

clock-cycle: TIME --=> TIME;

clock-cycle[t] = proj-2-1{(increment{t],offer-time(t])];

increment: TIME -—> TIME;

of fer-time: TIME ---> FILLER U TIME;

of fer-time(t] = xr-time[t].

Any process wishing to read the current time must evaluate:
current—-time: -~---> TIME;

current~time = xm~time[“null”].

Concurrent “xm-time””s will compete to match with “xr-time”, implying for this
particular specification that no two readers will ever get the same clock
value.

Another common type of free-running process is a digital siamulation of a
nondigital, unintelligent environment object. Here s the top-level
specification of the processes representing the machines in the environment of
a process-control system ([Zave & Yeh 81}):

jf..3

< ; machine~j-cycle: MACHINE-STATE ---> MACHINE-STATE;

machine-j-cycle[m] =
"”°j'2'1§ji%’?:iféimﬁ‘éfﬁf shfesnadpyy i
H
feedback-j-if-any: =---> FEEDBACK U FILLER;
feedback-j-1f-any = xr-j-back[“null”];

simulate-machine:
MACHINE~-STATE x (FEEDBACK U FILLER) =~--> MACHINE-STATE;

sense: MACHINE-STATE ~--> SENSOR~DATA;

offer-machine-j-data: SENSOR-DATA ---> FILLER I SENSOR-DATA;

offer-machine~j-data[s] = xr-j-sens(sj

>.

During each process step two things are done in parallel: (M)
“simulate-machine” computes the next process state, which {s an element of
"MACHINE-STATE" encoding the machine’s current status, and (2) the current
output of sengors attached to the machine ("sense[m]”) is offered to the
control system via "xr-j-sens”. If the control system i{s ready to accept the
data from this machine cycle an exchange will take place; otherwise the data

will be gone forever.

39

“Simulata-machine” has two arguments: the current machine gtate, and the
value roturned by “feadback=-j-1f-any”. This function 18 defined as
"xr-j~back”, an exchange function which {nteracts with geveral sttes {n the
control system which provide controlling feedback to the jth machine. If soue
actuator 1is being activated at the moment “xr-j-back” {s evaluated, an
exchange takes place and a value in "FEEDBACK" 1s returned. Otherwise the
argument "“null”" is returned, indicating that no actuators are being used.

Our final example of a free-running process 1{s a producer-consumer
buffer. Its process state {8 the current buffer contents, and is successor
function is:

next-buffer: BUFFER ---> BUFFER;

next-buffer[b] = give-to—consumer[get-from~producer(b]];

get-from-producer: BUFFER -—> BUFFER;

get-from-producer{b] = /full[b]: b,

/;true’ ¢ put-on-tail[(xr-prod[null”},b)]
give~-to-consumer: BUFFER ---> BUFFER;

give-to-consumer(b] =

/empty[b]: b,
true : put-on-head{(rest{b],xr-cons[first{bl])}]

On each process step "get-from-producer” provides the opportunity to put
one new element 1in the buffer (assuming 1t is not already full). 1If sone
producer has a pending "xm-prod[new-element]”, “new-element” will be returned
as the value of "xr-prod” and inserted. Otherwise “xr-prod” returns "“null”™™,
which “put-on-tail” will simply ignore.

Likewise, on each process step "give-to-—consumer” offers the element at
the head of the buffer ("first{bl]") to any process evaluating
“"xm-cons{ null“]". If such an evaluation is pending an exchange will take
place, and "xr-cons[first(b]]"” will return "“null™", which "put-on-head” will
ignore. Otherwise the wunconsumed “first{b]” will be returned, and
“put-on-head” will reinstate 1it.

The expected behavior of this process (at least under light loading) will
be to cycle very fast, checking for interactions but not having any on nost
process steps. This shows that exchange functions are In some sense more
primitive than synchronization mechanisms which enable a process to wait for
any one of several events to occur. The pavoff 1{s a much simpler
implementation for exchange functions, and the choice 1s in keepiny with the

PAISLey philosophy of simplicity and minimal semantics. It is also arguable

S0

that the above specification is as perspicuous as any, largely because of the

benefits of applicative style.

5.3.4. Implementation

In almost all cases the pattern of matches within a class is one-to-one
or many-to-one, the latter for resource competition. In this section we
present an efficient distributed algorithm for implementing exchange wmatching
in these cases (one additional condition: it cannot be many-to-one matchiny
where the "xr"“s are the "many”). In all cases a central matching facilfity
for each class will do the job.

Consider first an exchange class with many "xm"“s and one "x" (or just
two "x"“s, 1in which case one of them takes the role of the "xm” in this
description), all residing at different nodes of a network (this is
illustrated {in Figure 15). When an "xm" is initiated, a message carrying its
argument is sent to the node where the matching "x" resides. These nmessages
are queued up 1in arrival order. When the "x" is initiated, if the queue is
empty, it waits until it 1s not. When the queue is not empty, it removes the
first entry as the "match”, takes the value stored there as its own value,
sends a termination message containing {ts argument to the matching "xm”, and
continues. Conmputation can continue at the "xm" as soon as the termination
message (with its value) 1is received.

This implementation uses only two messages per match, and automatically

prevents lockout with FCFS queueing. For classes with one "xr” and elther cne

" -

x" or many "xm""s, the queue is formed at the site of the "xr", and the only
modification necessary is that if the "xr"” i{s initiated when the queue of

possible matches is empty, then it does not go into the wait state.

5.3.5. Further properties and justifications

Because exchange functions are only “"pseudo-functions” and have
side-effects, expressions containing them cannot be optimized to avoid
evaluation of expressions whose values are not needed. The nost conmon
example of this 1s a successor function with the form "proj-2-1[{(a,b)]", where
expression "a" computes the next state and “b” interacts with other processes.

There 1s also a potential problem with distributing values obtained by

interaction, but the formal parameter mechanism does this nicelv. Suppose the

effect of

/equal[(x-denom({ null”|,0)]: “divide-check”,)
/':rue : divide{(numerator,x-denoa("aull”])]

is wanted, where both usages of the value returned by an exchange are supposed

to result from a single evaluation. This can be specified unambiguously by
defining "quotient” as:

quotient[(n,d)] = /equal{(d,0)]): “divide-check”,
“true ¢ divide[(n,d)]

N ’
and then using it in the invocation “"quotient{(numerator,x-denon{ nuli”j)]"
Establishing the internal consistency of a specification with exchange
functions requires some attention. The range of a user-chosen function
defined as an exchange nust agree with the domains of all those with which it
can exchange. Furthermore, precedence constraints caused by nested evaluation
structures can cause exchange deadlocks. But the channel of an exchange
function has been made a constant attribute rather than an argument to it just
so that exchange patterns would yfeld to static analysis, and simple arguments
do establish deadlock~freedom in many common cases. For {nstance, the process
hierarchy visible in Figure 8 expresses the acyclic "dependency” structure ol
the 1{interactions {n the system; the argument that this prevents deadlock is a
common one in the operating system literature (e.g. {Brinch Hansen 77}).
There are so many proposals for distributed interaction nechanisns
current today that comparison and justification are essential. lost properily,
exchange functions are motivated and justified by our grnal of fitting
processes and asynchronous interactions into an applicative frumework, and 1in
this role they are almost unique (see also [Milne & Milner 79}). Their
generality i{s established by Figure l4(b) and by extensive experience with
them, which indicates that the only kind of interaction they cannot specify is
o unbounded broadcast.
Exchange functions can also be justified, however, on the same hasis as
- procedure-based mechanisms, which fall 1into the two gencral categories of
procedure-call mechanisms ({Brinch Hansen 78], [Hoare 74], [Ichbiah et al.
79]) _and message-passing ([Rao 80}). Exchange functions are more primitive
than procedure calls because they only specify interaction at one point (n

time rather than two (procedure call and return). They are thus more generail

and easier to implement, while the mutual synchronization of the communicating

processes provides much of the structure and control usually assoclated with

- | —

L. |

i~
[28]

procedure-call mechanisms.

It 1is the wmutual synchronization that most distinguishes exchange
functions from message-passing mechanisms, where (usually) nmessages are
automatically buffered, so that the sender transmits the mnmessage and
continues, while the message is queued until the receiver is ready for it.

The declgion against this scheme {s based on our concern with
performance. Consider a set of terminals sending updates to a central
database. With exchange functions a terminal cannot create new work for the
system until the system has accepted its previous work. 1If a termlnal could
simply send an update message and cont{nue, 1its speed could {increase
(unchecked by the abillity of the system to handle the work), the queue at the
database could grow to unbounded lengths, and no bounds on the performance of
the system could ever be established.

At the same time, there 's nothing wrong with bounded buffering, but this
can always be specified in PAISLey. But introducing bounds within an
abstract, general~purpose interaction mechanism (such as "message passiang up
to some bound”) would seem a most unfortunate mixture of specification and
implementation.

Given that synchronization is golng to be two-way, it costs very little
in the 1implementation to preserve the possibility of two-way data transfer,
although 1t {3 seldom used. It also keeps the number of primitives down by a
factor of two, since otherwise each of the three exchange functions would have
to come in a "sending data” and a "recelving data” version.

Of all the well-known Iinteraction mechanisms, the most similar to
exchange functions 1is Hoare”s input/output primitives. In Hoare’s language, a
pair of statements, "P?input” in process Q and "Q'output” in process P, will
come together {n the same mutually synchronized manner that two matching
exchanges do. "Output” 1{s an expression whose value is assigned to the
variable "input”, assuming appropriate type correspondences. In addition to
the relatively unimportant data asymmetry, Hoare’s primitives seem to be
different from exchange functions in three fundamental wavs: (1) There 1= no
way to specify real-time or free-running interactions. (2) There s no
straightforward way to specify resource sharing, since all “matches” are
one-to-one by process name. In Hoare”s language a process representing a
shared resource must have a separate command for each process with which it

can conmunicate, and guard that command (({Dijkstra 75)) with an input command

naming the appropriate process of the many. The guard (and statement) to be
executed are chosen nondeterministically from the processes that are ready to
communicate. These multiple statements seem distinctly clumsy compared to an
“"xm"/"x" exchange match. Furthermore, the full knowledge each process must
have about the names of the processes with which 1t communicates wnakes
modularity difficult to achieve. (3) Hoare”s primitives belong in a
procedural, rather than applicative, framework. The destination of a data

transfer, for instance, is specified by an address.

5.4. Performance requirements

5.4.1. Definition of performance requirements

So far the only structure that has been needed for complete and formal
specification of performance requirements is attachment of timing and
reliability attributes to functions in the “functional” requirements
specification. A timing attribute refers to the evaluation time of the
function. It 1s a random variable, and any information about its
distribution, such as lower or upper bounds, mean, or the distribution itself,
may be given.%***** Timing attributes fo} exchange functions are attached to
the channel, and hold for all interactions on that channel.

A reliability attribute can only be attached to a function whose range is
divided into two subsets (e.g. "=---> SUCCESS-RESULT U FAILURE-RESULT™), the
first for the values returned by successful evaluations, and the =second tor
values returned when the evaluation fails. The attribute itseclf {s a discrete
(binary) random variable whose two outcomes denote successful or failed
evaluations, and any {nformation abhout {ts distribution mav e given.
Reliability attributes for exchange functions are attached to the channel, and
hold for all interactions on that channel. Furthermore, when an exchange
function fails {t must match with another whose evaluation also fails, with

the values of both being selected at random from the “failure” subscts of

]

thei{r ranges. This restriction is made so that failures will not affect
complicate analysis of exchange patterns. Failure of a nonprimitive function
simply means that it delivers a value in the second subset ~f {ts range.
Reliability {s a difficult and 1little-understond subject, but this
definftion of 1t has several appealing properties. Tt forces the apecifiad

system to have the primary characteristic of a reliable svstem, nancly going

e .

e~ - -

into a well-defined and previously anticipated state when something fails. It

makes reliability independent of timing and functionality, since a function
evaluation must satisfy its timing requirements and deliver a value in the
declared range regardless of whether it succeeds or fails. In fact, we have
deemed this property so important that we have sacrificed some realism for {t:
only primitive functions can really fail, since nonprimitive ones are always
evaluated according to their definitifons. Much more knowledge of reliability
is needed before we can be sure how successful this approach will be, but {ts
formality and tractability are strong arguments in its favor.

These performance requirements can be simulated by the specification
interpreter, and checked (in principle!) for internal consistency, just as the
functional ones are. This means, for instance, that if "f[x]" 1Is defined as
"g[h{x]]", and there are upper bounds on the evaluation times of all three,
then the wupper bound on "f" must be strictly greater than (allowing time for

invocation/argument transfer) the sum of the upper bounds on “g" and "h".

5.4.2. Examples of "synchronous closed-loop” performance requirements

An on~line database system can be called a “synchronous closed-loop”
systen--"closed-loop” because the entire feedback loop realized by the systen
is explicitly represented, and "synchronous” because the terminal process (on
behalf of the cooperative person behind 1it) waits for responses, i.ec.
synchronizes itself with the system. For these systems the basic performance
requirements are particularly easy to specify, and all are attached to the
terminals. We will refer to the functional terminal specification in 5.2.

A response~time limit of 3 seconds is specified by:

transact: “time ---> maximum = 3 sec”.

(Performance requirements are currently just comments i{n the PAISLey syntax
because we have not yet settled on a formal language for distributions.) An
average load of 200 transactions per second {s specified by:

terminal-cycle: “time ---> mean = 50 sec”,
which says that on the average a terminal demands a transactinan (goes throuch
a cyclé) every 50 seconds. Finally, the requirement that at least 99 per cent
of all transactions must be processed successfully (s expressed as:

transact: “reliability ---> prob{ “success” | >= .99",

which, of course, can only be attached to “transact”™ because {ts range s

divided into success ("RESPONSE"”) and failure ("ERROR-MESSAGE") subranpes.

5.4.3. Examples of "asynchronous closed-loop” performance requirements

The process-control system depicted 1in Figure 8 can be called an
“agynchronous closed-loop” system——-"asyunchronous” because the machines, which
are the source and destination of the major feedback 1loop realized by the
system, are free-running. The system must keep up with them without thelr
cooperation. Performance requirements for these systems are nore of a
challenge, but the operational approach enables wus to specify then
straightforwardly. "Open-loop” specifications, In which not all of the
feedback loop (ultimately, the purpose of any embedded svstem is to realize
feedback 1loops) 1s 1included explicitly in the mnmedel, have performance
requirements similar to these. An example of an open-loop specification would

be a patient-monitoring system 1in which treatment nf patients was not

represented, only display of warning messages.

We will now present the timing requirements for the process—control

system. The machine processes specified in 5.3.3 were designed to carry out 1 ’
fixed-interval simulation with step time or granularitv .l second. This is
specified:

JM..3< ; machine~j=cycle: “time --=> = .1 sec” >.

Recall from 4.1 that there are two closed feedback loops reilired by this
system. The fully automatic feedback loop for conditions lacal ta iadividual

machines i{s provided by the "machine-monitor” processes. The partiallyv manua!

feedback loop for dangerous factory conditions {ncludes the “machinc-menitor
processes, the “"factory-monitor” process, and the “operator” process directiw
in 1{ts realization. Factory engineers give these two 1asns rowponne=r (7

1{mits of 3 and 60 seconds, respectively.

The automatic feedback loop will be considered first. The anceesser
functions of the machine monitors are defined as follows:

j#L..3

< ; machine-j-monitor-cycle: MACHINE=IMAGE ==--> NACHIYE-IYACK,

machine- j-monitor-cycle&
process-machine- |- ata[(m pot-machine~j=dat i), {

get-machine-j-data: =--> SENSOR-DATA; i}
get-machine-j-data = x-j-sens(null”};

process-machine-{-dat
MACHINE-IMAGE x GFNSOR DATA ===> NMACHIVE=TMAGE;

process—machine-j-data((m,d)] =
proj- 3-1[(maintaln—nachine image[(m,d)],
feedback=-j-{f-needed check=machive-conditton Y

provide-machine-j~data|(m,d)}
H

maintain-machine-image
MACHINE~IMAGE x SFNSOR-DATA ~==~> MACHINE-TIMAGE;

check-machine~condition:
MACHINE-IMAGE x SENSOR-DATA ---> FEEDBACK U { "ok~ };

feedback-j-i{f-needed: FEEDBACK U { “ok” } ---> FILLER;
feedback-j-1f-needed[f] = /gggﬁé[(f.’ok')]i fggééack—J[fl
;

feedback-j: FEEDBACK ~--> FILLER;

feedback-j(f] = xm-j-back[f];

provide-machine-j-data: MACHINE-IMAGE x SENSOR-DATA ---> FILLER

>.

A monitor begins its step by getting sensor data from fts machine (see 5.3.3).
"Process-machine-j-data” does three things in parallel with that {nformation:
(1) update an “"image” of the machine which i{s kept in the process state for
the purpose of making history-sensitive decisions, (2) check to see {f
feedback 13 needed and 1f so provide it, and (3) offer edited forams of the
sengor data to other parts of the system. Note that the automatic feedback

loop 1s completely contained within one cycle of a machine monitoring process.

This means that the necessary formal performance requirement is siaplv:

j#..3< ; machine-j-monitor-cycle: “time ---> maximum = 3 sec” D.

Since the other feedback loop involves action by the environment (the
operator) as well as the system, performance allocation of the 60-second
leeway must be included 1In the requirements. Performance allocation is
normally a design activity, but this 1s a typlcal exiample of the frequent need
to handle "design-like"” deci{sions at the requirements level. If the operatir
is allocated 50 seconds to respond to the alarm, this decision can be
documented by specifying:

operator-cycle: “time ~--> maximum = 50 sec”,
since the operator”s responsa to an alarm Is completely contiined withian one
cycle of that process.

The "factory-monitor” process is very similar to the “machine-monitnar”

processes, except that {t gets its data from the machine monitors instead of
the machines, and responds to detecting an undesirable condition hv notifving
the operator 1{instead of {nteracting with the machines. Thus the 1utomatic
part of this feedback loop is completely contained within one <cvcle cof the

“factory-monitor” process, with the understanding that the data it receives

4

from the machine monitors may already be as much as 3 seconds old. e
obvious conclusion is that the factory monitor must complete its cvcle withina
60 - 50 - 3 = 7 seconds:

factory-monitor-cycle: “time ---> maximum = 7 sec”.

Both the machine monitors and the operator need to access the datahase
dur{ng their cycles, and therefore depend on database response to mee:r their
own performance requirements. Although {t 1s not necessary until the Jdesizn
phase, we can derive a performance requirement for the database that will
guarantee adequate service, assuming an implementation with FCFS schedulin,,
such as that in 5.3.4. (We know of no reasonable method besides FCFS queueiny
for preventing lockout.) Let us say that every process must be rfuarantecd o
database response/access time of 2 seconds, which we judge will enable ».in
machine monitors and the operator to satisfy their other coastrairts. Since
interactions are mutually syachronized, no process can go an to create nore
work for the database until {ts previous request has been processed. Tiis
means that the maximum number of outstanding requests is five (five processes
have access to the database), and a time limlt of .4 seconds will guarintee
that all are honored within 2 seconds:

database-cycle: “time -~-> maximum = .4 sec”.
5.4,4. "Real-world" properties

Time and reliability (the fact that somcotimes dizital -omporents do o0
do what thelr definition says they will, for phvsical rrasons fornver hovend
the reach of digital logic) are nondigital properties that {ncontrovertisiv
affect the digital domain. In [Zave 80bh; nanv other susly phvsicad
("real-world”) properties are mentioned, weight and distance, (9r cxawple.
Why aren“t these performance requirements as well?

The answer 1s that, to the extent that we know them, the effects of theso
properties on the computational (digital) domain can he speciried {n terms of
functions, timing, and relilability. Welght constraints, for {nstance, onlv
affect how many functions can be realized. Fven Lf we {44 attach weicht
attributes to components of a PAISLey specificattfon, there is ncthiny that an
interpreter could do with them. Therefore an (nformal -asment s Just s
satisfactory.

Distance {8 a more {nteresting example hecause (ts eoftocts an the

computational domain are more varied. Distance increases the reiitive ti{me

for interprocess interactions, decreases component reliab{lity, and {increases
the logical complexity of interfaces which must cope with these factors. VYet
these three effects are directly expressable in terms of timing, reliabflity,
and functional requirements, respectively.

Factors such as these can have a profound effect on requirements. In an
airline reservation system, for instance, {t may be necessary to divide the
response-time or transaction-reliability allowances into portions for the
data-communication subsystem and portions for the database subsysten.
Although (as mentioned before) allocation is technically a design decisinn.
two addftional reasons, both applicable here, for doing 1t during the
requirements phase are: (1) to enable feasihbility analvses of two very
different technologles, and (2) to contract the work to different
organizations.

These allocated requirements can be specified 1in PAISLey. we have
constructed a requirements model in which time limits are given for, and
failures can occur in, each of three stages: input transmission, transaction
processing, and output transmission. Failure at any stage aborts subsequent
stages and propagates an appropriate error message. This s the source nf
elements {n the set "ERROR-MESSAGE"™ found in the range of “transact” in the

terminal specification.

*

*4

6. INTERIM EVALUATION

How well do PAISLey specifications meet the goals of 1.27 Requiremeints

written 1in this language are certainly precise, unambiguous, and execytable,

and can be determined to be Internmally consistent. We have argued that tiae

language allows, and perhaps even encourages, specifications to bhe modifiable,
intuitive, and minimal.

Experience has iIndicated that PAISLey allows complete spocification of
requirements properties relevant to the computational domain. It savs nothing
about constraints on the development process itself, such as dradlines, ceost
1{mics, methodological standards, and routine wmaintalnance proccdures. It is
also not particularly helpful In posing alternate or prioritized requiremerts
([Yeh et al. 80]). And the need to supplement forral reguirenents with
diagrams, comments, and other Informal avenues of human communication i1l
never disappear.

PAISLey also enables nontrivial decomposition of conpiexity i all three
wavs. The division of a specification Into processes {s an ospecialiy usetyl
form of partition, because it deconposes both static and dyvnanic rropercies,
and because 1t correlates falirly well with our abstract, i{ntuitive notion of
system “functions”. The partitioning even axtends ta exocution ot
specifications, because any subset of processes can bhe executed in ifgnlation,
simply by leaving all interactions with missing processes as unelahorated
primitives in a form such as "recelve-message: —-——=> NESSAGE". The interpreter
will evaluate this “interaction site” by choosing somr messase at raaden.
This capability was used in [Zave & Yeh 81] to develap a specification in tive
versions, each independently executable, and each obtained from the last ™v
adding new processges/functions in an "outside-in” sequence.

A projection decomposes complexity by representing onlv a -ubscet of tae
systen”s properties. Performance attributes are Jdefined a0 thar the
functional specification is independent of {ts performiance properties, amd
timing and reliability are independent of each other, both very useful forns
of projection. Furthermore, by elaborating a specificatinn oniv uantil i}
process interactions and control-oriented functions are expii-it (1 aost
natural thing to do in PAISLev!), and bv then specifving the pri=is{ve sots

and data-manipulation functions in a data-oriented specification Tancae, the

50

analyst can achieve an almost perfect projection of his underlving model onto
process-oriented and data-oriented views.

Within processes, state replacement (rather than assignment) and
applicative notation offer unsurpassed opportunities for abstraction.
Applicative languages actually force the user to create an
abstraction/elaboration hierarchy, while the high-level, but procedural,
languages now being proposed as design notations continually disrupt {t with
assignment statemnents. Processes, however, do not lend themselves so readily
to hierarchical representations. More research 1s needed in this area (see

7.2, where formal manipulability is also mentioned).

oy

7. PLANS FOR FUTURE RESEARCH

7.1. Fxperience

We have plans to {Implement a specification interpreter w«w‘:h si=nle
consistency~checking, so as to gain experience with the izpact »f executihlia
specifications on the requirements development process. This will inclade
consideration of the language front-end, and investigation »f the displiar

.

report, and trace facilities needed for the results of executinn.

7.2. Methodology

This work on requirements specification, which has heen pursued so {ar
with small examples, must be extended ia the directinons of requirenen:zs
analysis, and "scaling-up” to large systems. Both probliens will e atta-xed

by looking for an abstraction methodology for process-based speciiicatians,

1.e. a technique for concelving of and specifylna a1 cveten of {nteract ianx
processes as a top-down hilerarchically structured s»2t o7 specifirations. Tae
technique for developlng a top-down hierarchy would provide a trial analvsis
methodology, and the existence of the hiervarchy would sssict wnalvses i
handling the complexity of large systems.

There are several precedents to follow fa *hi:z ofooarr, v le e
well-known arrangement of processes chemselves in a4 Blovirchis-al stractor.

where processes at higher levels "give work to” procasses at iower lavel:

({Parnas 74}); this will be helpful for requirsaents i7 ani =le 15 the
hierarchies so created coincide with some raticaal ‘lievarc o 5 4ot
"functions”, seen from the requirements viewpolint. Ansrfier ~roat Sa (b
aggregation of related processes into "subsystems™, as (n DD 0 2o e g
781). There {s clearly some correlation ‘Fetweer avites T

(requirements viev) and prncesses in our example specitf-ati v, Wi o 0
encodraging sign;, furthermore, many »of the same palierns of Ay coceon rn

observed over and over again in embedded svstenms.
One other possiblility 1s the use of purely applicatioe wotard v 4 {0
applied in [Smoliar 79] and (Friedman & Wisr 79), {.0. t0 ~peciie carilicl o

distributed system concepts in a way that is more abetrict thin ~rocoga-> a0

notation could be, because of the total lack of states (the concomitant
disadvantage is inability to deal with performance or free-runniny Interfaces,
see ([Zave 80a]). By establishing some formal equivalences between these two
notations, we may be able to exploit some of the formal manipulability and
power of abstractlion characteristic of applicative languages for our own,

process-oriented, purposes.

7.3, Design

It has been pointed out that PAISLey is capable of specifving the resulcs
of design decisions. A logical extenslon of this {s to {nvestizate its
properties as a design specification language. The benefits are potentiallxr
great, because a uniform language for requirements and design should nake
possible substantial 1improvements in the traceability and automatability of

design. It might also lead to a better theoretical understanding of design

decisions as resource/performance trade-offs.

¥

i L.

A

8. CONCLUSION

It would not be seemly to end a paper as long as tinls without 1
conclusion, but there is little left to say.
. In addition to the varied, but small, examples discussed here, PAISLev
has been used to specify (in some 33 pages) a distributed desizn fer an
innovative interactive numerical system, and the system has been implementad

directly from that specification. Throughout the project the specification

has served successfully as an Interface between the nunerical and

distributed-system domains, both for human communication and for executable

code ({Zave & Rheilnboldt 79}, [Zave 78], [Zave & Cole 81)).

ACKNOWLEDGMENTS

Many people have contributed to the work presented here. My thanks
especially to Bob Fitzwater, with whom the foundations for PAISLey were laid,
to Steve Smoliar, Alex Conn, and Roland Mittermeir, for stinmulating
discussions on requirements, to Priscilla Fowler, for the chance to try these
ideas on a class at Bell Labs, to George Cole, for diligent and ahle
assistance, to Dick Hamlet, who would read this stuff before anvone else would

(or could), and to Raymond Yeh, for support, encouragement, ideas, and good

advice.

REFERENCES

[Alr Force 65]
U.S. Air Force, "Alr Force Weapons Effectiveness Testing (AFWET)
Instrumentation System”, R&D Exhibit No. PGVE 64-40, Air Proving Ground
Center, Eglin Air Force Base, Florida, 1965.

[Alford 77&
Mack W. Alford, "A Requirements Englneering Methodology for Real=Tinme
Procggségg Requirements”™, IEEE Trans. Software Engr. Sr-3, January 1977,
PP =067.

[Backus 78&
John Backus, "Can Pro%ramming be Liberated from the von Neumann Style? A

Functional étyle and Its Algebra of Programs”, Conm. ACM 21, August
1978, pp. 613-641. —

[Balzer & Goldman 79]
Robert Balzer and Neil Goldman, “"Principles of Good Software
Specification and Thelr Implications for Specification Language”, Proc.
Spec%éig?tions of Reliable Software Conf., Cambridge, Mass., April 1979,
PP =67,

[Belady & Lehman 79
L.A. Beladg and M.M. Lehman, “The Characteristics of large Svstems”,
Regearch irections 1Iin Software Technology, Peter Wegner, ed., M.1.T.
Press, Cambridge, MassT, 1979, pp. 106=T38?Ji“

[Bell et al. 77&
Thomas E. Bell, David C. Bixler, and Margaret E. Dver, “An FExtendable
Appraoch to Computer-Aided Software_ Requirements FEngineering”, [EEFE
Trans. Software Engr. SE-3, January 1977, pp. 49-60 —

(Bell & Thayer 76&
T.E. Bell and T.A. Thayer, “Software Requirements: Are They Really a
Problem?”, Proc. 2nd Intl. Conf. on Software Engineering, San Francisco,
Cal., October 1976, pp. 61-68.

[Boehm 76]

Barry W. Boehm, “Software Engineering”, IEEE Trans. Coumputers C-23,
December 1976, pp. 1226-1241. R

[Brinch Hansen 77]

Per Brinch Hansen The Architecture of Concurrent Prograns,
Prentice-Hall, Inc., lo77= - -

[Brinch Hansen 78&
Per Brinch angen, “Distributed VProcesses: A Goncurrent Progtamming
Concept”, Comm. ACM 21, November 1978, pp. 934-941.

{Conn 80]

Alex Paul Conn, "Maintenance: A Key Element i{n Conmputer, Requirements
Definition”, Proc. COMPSAC “80, Chicago, Ill., October 1980, pp. 401-406,

{Davis & Rauscher 79] i
Alan M. Davis and Tomlinson G. Rauscher, “"Formal Techniques and Automitic

Processing to Ensure Correctness in Requirements Specifications” Proc.
Spec{giggtions of Reliable Software Conf., Cambridge, Mass., April 1979,
pP. =32,

(Davis & Vick 77]
Carl G. Davis and Charles R. Vick, "The Software Development Systen”,
IEEE Trans. Software Engr. SE-3, January 1977, pp. 69-84.

[Dijkstra 75]
E.W. Dijkstra, "Guarded Commands, Nondeterminacg, and Formal Derivation
of Programs”, Comm. ACM 18, August 1975, pp. 453-457.

[Fisher 78]
David A. Fisher, "DoD”s Common Programming Language ©ffort", Computer i1,
March 1978, pp. 24-33. - =

[Filman & Friedman 80]
Robert E. Filman and Daniel P. Friedman, Languages and ‘odels for
Distributed Computing, to appear.) "* -

{Fltzwater & Zave 77]
D.R. Fitzwater and Pamela Zave, "The Use of Formal Asvnchronocus 2rocess
Specifications in a System ﬁevelopment Process’, Proc. Ath Texas Conf.
on Computing Systems, Austin, Texas, November 1977, pp. 2B-21 - 2B-30.

[Frankel 79;

R.E. rankel, "FQL--The Design and Implementation of a Functinnal
Database Query Langua%e", Un?v. of Penn. Decision Scicnces 79~05-13,
Philadelphia, Penn., 1979.

(Friedman & Wise 77
Daniel P. Friedman and David S. Wise, "Aspects of Applicative Progran-i-.
for File Systems”™, Proc. ACM Conf. on lLaneuage Desiin fair Reliahle
Software, Raleigh, N. Car., March 1977, pp. 41-5

[Friedman & Wise 78a]

Daniel P. Friedman and David S. Wise, "Aspects of Applicative Progran=tne
Egs gsgallel Processing”, IEEE Trans. Computers C-~l7, April }073, :

[Friedman & Wise 78b]
Daniel P. Friednan & David S. Wise, "Unbounded Computational Structures”,
Software-~Practice and Experience g, July-August 1978, pp. H07=4lh.

[Friedman & Wise 79é
Daniel P. Friedman and David S. Wise, "An Approach to Falr Applicative
ultiprogramming”, Semantics of Concurrent Computatinn (5. Xahm, e-l.),
%ggtggg Notes In Computer Scienteé 77, Springer<Vverlap, Berlin, 1976, IR

[Friedman & Wise 80)
Daniel P. Friedman and David S. Wise, "An Indeterminate Constructor tor
Applicative Programming”, Proc. 7th Annual ACM Svmp. on Driacinlos ot
Programming Languages, Eas Vegas, Nev., January 1980, n»np, Ii5-250.

(Heninger 79}
Kathryn L. Heninger, "Specifzing Software Requireaents far Tonnlexw
Systems: VNew Techniques and Their Applicatfon”, Ffroc. Speci{fi-atiens ~f
Reliable Software Conf., Cambridge, Mass., April 1979, pp. l-l1a,

[Hoare 74A
C.A.R.

Hoare, "Monitors: An Operating System Structuring Concent™, 7=,

56

ACM 17, October 1974, pp. 549-557.

(Hoare 78

C.A.R. Hoare "9ommunlcntlng Sequential Processes™, Comm. ACM 21, August
78, pp. 66b~677. —

[uorn1n§ & Randell 73]
J.J. Horning and B. Randell, “"Process Structuring”, Computing Surveys &5,
March 1973, pp. 5-30. -

[Ichbiah et al. 79)
J.D.“Tchliah et al., "Rationale for the Design of the Ada Programning
Language”, SIGPLAY Notices 14, June 1979, Part B.

[Ingalls 78]
Danfel H.H. Ingalls, "The Smalltalk-76 Programming System Design and
Implementation™, Proc. 5th Annual ACM Symp. on Principles of Programming
Languages, Tucson, Ariz., January 1978, pp. 9-16.

[Iverson 80

Kenneth E. Iversion, "Notation as a Tool of Thought™, Coam. ACM 23,
August 1980, pp. 444-465. Lomm. abd -2
[Knight 72

John &. Knight, "A Case Study: Airlines Reservations Svstems”

the IEEE 60, November 1972, pp. 1423-1431.

[Mao & Yeh 80%
Willfam T. Mao and Raymond T. Yeh, “Communication Port: A Language
Concept for Concurrent Programming”, IEEE Trans. Software Engr. SE-0,

March 1980, pp. 194-204,

(Milne & Milner 79]
George Milne and Robin Milner, "Concurrent Processes and Their Svntax’,
Jour. ACM 26, April 1979, pp. 302-321.

[Mittermeir 80]
Roland T. Mittermeir, “"Semantic Nets for Modeling the Requirements of
Evolvable Systens--An Fxample”, Institut %uer Digitale Anlagen,
Technische Universitaet Wien, Vienna, Austria, May 1980.

{Parnas 74}
David L. Parnas On a “Buzzwo
Congress, Stockﬁolm, Sweden, 1

[Rao 80]
Ram Rao, "Design and Evaluation of Distributed Communication Primitives’”.
Univ. of Wash. Coamputer Science 80-04-01, Seattle, Wash., April 1930.

[Riddle et al. 78

WilTTadm E. Rlddle et al., "Behavior Modeling During Software Design”,
IEEE Trans. Softwar® Emngr. SE-4, July 1978, pp. 283-7192.

g’: Hierarchical Structure™, Proc. 1F1L?

r
974,

[Ross 77}
Douglas T. Ross, “"Structured Analysis (SA): Language for Connunicating
Ideas”, IEEE Trans. Software Engr. SE-3, Tanuary 1977, pp. l6-34.

[Ross & Schoman 77&
Douglas T. oss and Kenneth R. Schoman, "Structured Analyvsis I:r
Requét?génts Definition”, IEEE Trans. Software Engr. SE-3, Januiry 1977,
pp. 6-15. — T -

(Roussopoulos 79]
Nicholas Roussopoulos, "CSDL: A Conceptual Schema Definit{nn Language for
the Design of Data Base Agglications", IEEE Trans. Software Engr. SL-9,
September 1979, pp. 481-496, -

(Smith & Smith 79)
John Miles Smith and Diane C.P. Smith, "A DPata Base A;proach to Sefrvare
Specification” Proc. Software Development Tnols Workshop, Planree Parv,
Colo., May 1974 SSpringer-Verlag, W.E. Riddle and R.F. Fairlev, eds.,
1980) . pp. 176-200.

s Proc. of

(Smoliar 79]
Stephen W. Smoliaré "Using Applicative Techniques to Design Distributed
P

Systems”, Proc. ecifications of Reliable Software Conf., Cambridpe,
Mass., April 1979, pp. 150-161.

{Smoliar 80]

Stephen W. Smoliar, "Applicative and Functional Programming”, Software

Engineering Handbook, c.v. Ramamoorthy and C.R. Vick, eds.,
g “Hall, +, CO appear. A

[Teichroew & Hershey 77]
Daniel Teichroew and Ernest A. Hershey ITI, "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of fnformartion
Ziozgssing Systems”, IEEE Trans. Software Engr. SE-3, January 1977, pp.

[Yeh et al. 79a)]
Raymond T. Yeh et al., "Software Requirement Engineering--A Persgcrtive",
Univ. of Texas Tomputer Science SDBEG-7, Austin, Texas, March 1979

(Yeh et al. 79b]
Raymond . Yeh, Nick Roussopoulos, and Philip Ch.ung, "Systeaatic
Derivation of Software Reﬁuirements Through Structured Analvsis™, 'niv.
of Texas Computer Science SDBEG-15, Austin, Texas, 1979.

(Yeh et al. 80]
Raymond T. Yeh et al., "Software Requirements: A Report on the State of
the Art”, Univ: “of Maryland Computer Science TR-949, College Park,
Maryland, October 1980 {(to appear as “Software Requirenents: New
Directions and Perspectives” 1in Software Engineering Handbook, C.V.
Ramamoorthy and C.R. Vick, eds., Prentice-HalTl, Inc.).

[Yeh & Mittermeir 80]
Raymond T. Yeh and Roland T. Mittermeir, “"Conceptual “o.leling as a BRasis
for Deriving Software Requirements”, Proc. Intl. Computer Svmp., Taipaei,
Taiwan, December 1980, to appear.

[Zave 78}
Pamela Zave, "The Formal Speclification of an Aadaptive, Parallel

Finite-Element System”, Univ. of Marvland TR-715, Collegre Park, Marviand
December 1978.

[Zave 8031
Pamela Zave, T“Applicative Specifications of Distribute! [vetoma:
Extending them to Embedded Systems”, submitted for publication, 1330,
[Zave 80bl
Pamela Zave, "“Real-World” Properties in the Requirements for Embe fdod
Systems”, roc. 19th Annual Wash., D.C. A™f Tech. Svmp., Cafrhershuryp,

Md., June 1980, pp. 21-26.

[Zave & Cole 81]
Pamela Zave and George E. Cole, Jr., "A Quantitative Ivaluatiosn «of ho
Feasibility of, an Suitable Hardware Architecturas far, an Adaptive,
Parallel Finite-Element System”, in preparation.

(Zave & Rheinboldt 79]
Pamela Zave and Werner C. Rheinbaldt, "Design of an Adaprive, Paralle!
Finite~-Element System”™, ACM Trans. Math. Software S, March 1970, oy

-1

.

[Zave & Yeh B81)

Pamela Zave and Ravmond T. Yeh, “Executable Requirements tor Fnhodde .
S;stems". Proc. S5th Intl. Conf. on Software Fagr., San Diegn, tal., ‘farch
1981, to appear.

APPENDIX: A GRAMMAR FOR PAISLEY

This grammar is LALR, and i{s written in BNF with nonterminals underlined.

Comments are transparent, and can therefore appear anywhere. Blanks are also
transparent, except {nside an ascii-string.

comment ::= "ascii-string”

spec ::= spec ; statement |

statement |

spec ; index~head < ; spec > [

index-head < ; spec >

index-head ::» lower-string # integer .. {nteger |

upper-string # integer .. integer |
integer .. integer

statement ::= system-decl |

func-decl |
set-defn |

func-defn

system-decl ::= (process-list)

process—list ::= process-list , process |

process |
process-list , index-head < , process-list > |

index~head < , process-list >

process ::= func-name [func-exp |

- > - s e) S g D oy S Ry o T o e b T = 8 " § o = = e b o = -y = - - —

func-decl ::» func-name : func-property

func-property ::= domain-range |

timing-attribute |

reliability-attribute
domain-range ::= set-exp —-> set-exp |
-—D set-exp

timing-attribute ::= comment

reliability-attribute ::= comment

set-defn ::= set-name = get-exp

set-exp ::= set-exp U set-term |

set—-term

set-tetm |

set-exp U index-head < U set-exp > |

index-head < U set-exp >

::= get-term x set-item |

set-item :

set-item |

set-term x index—head < x set-term > |

index—-head < x set-term >

:= set-name |

(set-exp) |

{ const-list }

set-name ::= upper-string - set-name-string |

ugger—strtng

set-name-string ::= set-name-string - set-syll |

set-syll

set-syll

::= upper-string |

const-list

integer

::= const=list , const-pame

const-name

const—-name

t= “ascif-string” |

. e o D > o T D b T T o e i O b WP Ty ok Sy = = Bk 2 P T o kY o e T = = s o = —— - = - = = e m — o — =

func~defn

integer |

real-number

1:= func-name = func-exp |

func-name formal-params = func-exp

formal-garams | param-list |

param-list

::= param~list , func-name |

func-exp

func-nane |

param~list , (param-list) |

(param-list)

::= func-name |

func-appl

const-name |

func-appl |

(func-list) |

/ pred-pair-list | “true’

::= func-name [func-exp | |

func~exp /

L 2

* 9

!
|

’_..._._..._.m-ﬂ SR . m :

LIY

index-head < func-name > [func-exp |}

func-1list ::= func-list , func-exp |
func-exp |
func-1list , index-head < , func-list > |
index-head < , func-list >

pred-pair-list ::= pred-pair-list , pred-pair |

pred-pair |
pred-pair-list , index-head < , pred-pair-list > .

index-head < , pred~pair-list >

pred-pair ::= func-exp : func-exp

func-name ::= lower-string |

lower-string ~ func-name-string

func-name-string ::= func-syll - func-name-string |

func-syll
func-syll ::= lower-string |

integer

Primitives of the grammar.
ascii-string ::= any string of ASCII characters

ugger—string ti= any string of quer-case alphabetical characters (note that
3 also an operator, and should not be generated as a set-name)

lower-string ::= any string of lower-case alphabetical characters (note that
X § aI86 an operator, and should not be generated as a func-name)

integer ::= any string of numerals

real-number ::= any string of numerals with a single enbedded period

- - - — o oy e e o s o = = e . = - —

Intrinsic sets.

FILLER = { “null” }

BOOLEAN = { “true”, “false” }

INTEGER = the set of all integers representable on the host machine
REAL = the set of all real numbers representable on the host machine

STRING = the set of all string constants with length less than or 2qual te
some bound

Typeless intrinsic functions.

x-lower-string | xm-lower-string | xr-lower-string
proj-integer-integer

equal

ool

61

Typed intrinsic functions.

sum: INTEGER x INTEGER --> INTEGER
difference: INTEGER x INTEGER --> INTEGER
product: INTEGER x INTEGER --> INTEGER
quotient: INTEGER x INTEGER =-> INTEGER
remainder: INTEGER x INTEGER -~> INTEGER
greater~than: INTEGER x INTEGER -~> BOOLEAN

less-than: INTEGER x INTEGER --> BOOLEAN
greater—-than-or-equal: INTEGER x INTEGER --> BOOLEAN
less-than-or-equal: INTEGER x INTEGER --> BOOLEAN

+

FOOTNOTES

*Thus “embedded” is almost synonymous with "real=-time”, but we prefer the
newer term because it does not exclude performance requirements dealing with
reliabil{ity.

**Throughout this paper mappings will be called "functions”, despite the
fact that mappings named in specifications are often relations. The reason is
that “function” gives a more accurate {mpression: the intention is alwavs to
produce a unique value when the mapping is invoked in the eventual target
system, even though that value cannot always be determined by a known

functional expression.

***#This {s actually an Inference from the requirements document, which 1is

by no means clear on this point.

****For interpretable languages, "fixed” and “bounded” always mean the
same thing, because the programmer declares structures sized up to the bound,

and then uses as nuch of them as needed.

ikMore generally, the sequence of evaluations of the function over the
lifetime of the system could be assoclated with a stochastic process, so that
the time of each evaluation would be a separate random variable, but let us

hope such generality will never be needed.

L g

FIGURES

(UNDECOMPOSED COMPLEXITY)

o — -

N

ABSTRACTIOD

Three ways to decompose complexity.

Figure 1.

B

TYPE CHARACTERISTICS EXAMPLES
embedded system speclal~-purpose (application) industrial process-
control svsten
absolute performance
requirements flight-guidance
system
data-processing speclal-purpose (application) batch business
system program
relative performance
requirements on-line database
svsten
support system general~-purpose operating svstem
relative performance software developnent
requirements tool

Figure 2. A requirements—level system classification.

“xkfin"
messages

“position”,
"fi{rtng”
messages

CENTRAL SITE
(real-time simulation)

Figure 3. The AFWET system.

S m—r———

. y :?[ﬁ;] A

——— e —————
-7 A

s ” S,

’ ’ fae n~

ENVIRONMENT PROPOSED SYSTEM
T 1
!
1
L]
|
i
real-tinme- }
clock !
o 1
crt-terminal 1
1
l ‘
!
! :
: ‘
. |
. ,
Figure 4. Partial model of a patlent-monitoring svwitenm.
space
time % !
£ —_— |
el &> ;
2% — —
0a= ,1 '
N4
(3 =¥ [Gv] !
. L4 !
process state o v) l
: N . \ R
! - - .
: successor function S .

asynchronous {ntoeract o

Figure 5. Processes in action.

]

PURCHASE~
ORDER

NOTICE

INVENTORY-
CONTROL~

ACCOUNT-
ORDER

PAYMFNT

Figure 6.

66

INVENTORY
check-
inventory
SHIPPING-
ORDER

send-~

invoice

process-
account-
order

process-
payment

inventorv

INVOICE

ad just-

J

L

| AccouN

e

o

A dataflow diagram for f{lliny orders from an {nventorv.

SHIPMENT

FROM_DEVICE

DETERMINE MESSAGE_TYPE

“FAILURE” 5
€ TYPE_MESSAGE
OTHERWISE
&
I S |
STORE_FACTOR_DATA EXAMINE FACTORS

z!& _USAFET AN RANGE
|/

OTHERWISE

TELL_NURSE_OF FACTORS

W

NOTIFY NURSE_OF_FAILURE
- - TO_NURSES STATTON

¢ \

(TO_NURSF,S_STATION >

Figure 7. A stimulus-resgonse path (gart of a patient-monitoring svstem)
specified in RSL (from [Alford 77}).

;

68

machine-monitor

factory-monitor

SENSOR-DATA

Figure 8.

[
i

AovEa3ddd

machine

r
]
t

MACHINE-pAT,

machine-monitor

- ..._._.r_l.......

machine

PROPOSED SYSTEM ! ENVIRONMENT

Procegs structure of the procesg-control systen.

/
-,.
s
4
’
47 .
'4& ’
Y J
.I
'
\ operator
\-
~
\-
\.
~
machine-monitor
N
s
s .
7 |
2|2 '
| = [
w | < .
< |z p
"\ N !
[/
Z
mo!
’
database ,
R
.I
-/ .
machine Piinter
N . FERREEE R PR

P, Sy—_

69

“test-element” processes

“"radio-channel” processes

“"radio-towar" processes

(channels time-multiplexed)

ENVIRONMENT

I I R B R P Y | . e e o e = e o s e s

PROPOSED SYSTEM

Figure 9. The environment of the AFWET system, including resource
requirements.

“"radio-tower” processes

real-time-clock

TIMESTAMPED-MESSAGE

relevant process at

central site

]

Figure 10. Specification of {ncoming message timestamps in AFWET,

delay d + 2

B ’ [}
‘:0 Ql P’
1 1 i
simulation time i P P2
P s 4
7~ rd
” < s rd ’
rd
. , 4 -
7 - -
- 7 ” i
7 4 p
V4 Le P
real time < <. £ + +

granularity g

Figure 11. The time scheme of AFWET.

simulator

real-time-clock

frame-stnrage

Figure 12. AFWET processes involved {n simulation.

output-buffer

r.

ENVIRONMENT

PROPOSED SYSTEM

71

STATE OF SYSTEM

Figure 13. The conceptual model underlying both process-oriented and
data-oriented approaches.

A

XM P XT

(a) gossible matches
within a class

Figure 14. The three types of

synchronizing

free-running

self-
matching X inpossible
non-
self-~ xm Xr
matching

(b) derivatinn of the tvpes

exchange functions.

O P A O

NODE 1
NODE 0
x-chan(a]
I
T
: NODE 2
7 initfat{on message (2,c)
3,4d
11b
. NCDE 3

Figure 15. Distributed implementation of exchange matchin,.

e e T i e St e

